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Abstract. This paper studies the provision of a homogeneous good with time-varying un-

certain stochastic demand and capacity-constrained producers. Due to market failures and

public interventions, private agents typically under-procured investments. We analyze the

design of long-term capacity markets where producers can sell their investment availability

to restore efficient investment levels. While their supply-side effect on investment decisions

is well known, we focus on the demand-side effects generated by their implementation. We

provide a novel sequential analytical framework of the capacity market followed by short-

term markets (wholesale and retail) to describe how different market design regimes can

affect the equilibrium of the system. First, we develop the model regarding the implemen-

tation of a single buyer on the capacity market, which needs to choose the cost allocation

regime for the demand side. And we extend our model to study how the realized demand is

accounted for in the market design. We demonstrate that the ability of the capacity market

to restore the social optimum, or at least to reach a second-best optimum, crucially depends

on the different design regimes of the capacity market, as well as on the assumptions of

policy interventions and the various market inefficiencies.
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1 Introduction

For some essential goods with demand varying over time, wholesale markets’ private incentives are

not sufficient to ensure that producers make enough investments to meet peak demand in advance

of the time when the peak demand materializes.4 In such industries, due to the critical importance

of these goods, policymakers tend to intervene and implement price caps or other types of regulation

that distort the price signal and undermine investment incentives. Moreover, the availability of the

production capacity for these goods can be characterized as public goods during scarcity periods,

for instance, during a cold wave with peak electricity demand or a pandemic with peak demand

for medicine or medical equipment. In such circumstances, the absence of adequacy between the

capacity and the peak demand, combined with the difficulty of implementing efficient rationing,

leads to high costs for society.5

One solution to restore the optimal level of investment lies in implementing a mandatory ca-

pacity market in which producers commit to having capacity available to collectively meet the

expected peak demand, as the regulator prescribes. Current implementations of such mechanisms

have been the prerogative of the electricity sector under the name capacity remuneration mech-

anism.6 However, the COVID pandemic prompted interest in setting up such mechanisms for

vaccine supply. For instance, in Ahuja et al. (2021), they study the implementation of a capacity

price for the procurement of vaccines and state that ”to accelerate the vaccine delivery timetable,

buyers should directly fund manufacturing capacity”. Ockenfels (2021) proposes a hybrid mecha-

nism that combines a capacity remuneration mechanism with guaranteed prices. On the supply

side of those mechanisms, each participating producer makes a price-quantity offer for a capacity.

If a producer sells capacity in this capacity market, he receives a capacity price and commits to

being available to produce over future periods.

4Our framework fits into the more general analysis of industries in which a form of competition follows long-run
investments, such as electricity markets (De Frutos and Fabra, 2011), communication network (Acemoglu et al.,
2009), or radio spectrum (Yan, 2020).

5The COVID-19 crisis offers a recent example of systemic cost induced by the lack of productive capacity. The
subject is well known in the electricity sector while remaining current, as illustrated by blackouts experienced in
China and Texas. Congestion in transport infrastructure can also be directly linked to the discussion in this paper.

6See for instance Doorman et al. (2016) for a technical description of potential implementations.

2



While the supply emerges naturally in those markets, the capacity demand requires a regulatory

intervention. Indeed, the public-good nature of investment during high-demand periods implies

that consumers are unwilling to buy capacities in capacity markets.7 Hence, the regulator must

define the demand function administratively so the market clears and provides producers’ capacity

prices. For instance, this demand side of capacity markets can be characterized by a single buyer

procuring all the capacity or by a set of rules describing how consumers or retailers participate

in the capacity market. This paper establishes a framework describing the economic impacts of

different demand side designs for capacity markets and their policy implications. We focus on

two interrelated questions that relate to (i) the cost allocation regime, that is, how a single buyer

allocates the capacity price between capacity buyers and final consumers, and (ii) the degree to

which the final consumers’ realized demand is accounted in the market allocation design.8 In

this paper, we describe the channel through which each possible market design impacts the system

equilibrium. We show that specific market design can affect the demand side of short-term markets,

which also has some feedback effects on capacity market equilibrium and constrains the regulator

in choosing the efficient investment level. In other words, our model allows for the analysis of the

endogeneity between the welfare-maximizing market outcome regulators aim to restore through

their intervention and the design of the implemented capacity market.

The direct effect of an additional stream of remuneration on investment decisions is well under-

stood. The current literature covers a significant range of issues : (i) the outcomes in investment

decisions with and without capacity markets, (ii) the effect of market power on the capacity price

determination, (iii) the relation with risk and business cycle (iv) the discrimination between dif-

ferent investment technologies.9 However, to our knowledge, there has been no formal analysis

7Transaction cost and asymmetric information prevent adequate transactions up to the optimal level; see, for
instance, Keppler et al. (2021) for a discussion in electricity markets. The insurance of having enough capacity has
a private value (how much each consumer is willing to pay to avoid inadequacy) and a social value, as an increase
in investment reduces the probability of systemic costs (Fabra, 2018). Furthermore, knowing the willingness to pay
for this insurance is sometimes technologically, socially, and economically impossible.

8We also use interchangeability term ex-post temporality, as capacity markets are set before demand is known;
as well as the term capacity demand allocation. At the same time, while this is out of the scope of this paper, the
dynamic nature of the provision of an essential good, such as electricity, is central. It includes the decision to invest,
which can span from many years to a few months, and the decision to consume the good. For instance, the good
is almost immediately consumed for electricity and vaccines. On the other hand, medical equipment, intensive care
units, strategic energy reserves, or human capital are more durable goods.

9See Bublitz et al. (2019) for a detailed literature review on the theory and implementation issues of capacity
markets in electricity markets.
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of different capacity markets’ demand side designs, the incentive properties of these alternative

approaches, and their ability to restore the socially optimal level of investment beyond the di-

rect effect of the increase of the marginal investment value due to the additional capacity price.

On the other hand, the importance of the demand function design in the capacity market is well

known.10 However, those papers still only consider the effect of the capacity market directly on

the supply side. In contrast, our paper underlines the indirect effect of this instrument on retailers

and consumers, which in turn impacts producers. Scouflaire (2019) is the first paper to represent

retailers’ strategies in the capacity market. She develops a theoretical model to analyze the prefer-

ences regarding information precision for uncertain future demand. Contrary to our approach, she

models heterogeneous price taker producers and homogeneous buyers competing for à la Cournot

under uncertainty on their level of capacity obligation. In this paper, we take a step back from

the supply-side-focused approach and develop a model that sheds light on the complex interac-

tions between the capacity market design and the demand side. Our model provides some new

and non-intuitive insights into their incentive properties and their ability to restore the socially

optimal (welfare-maximizing) level of investment.

The central results lie in the relation between the outcome in terms of investment level and

expected welfare at the system equilibrium and the choice of a particular demand-side market

design. To do so, we extend the canonical benchmark model for a homogeneous good characterized

by time-varying demand, which describes the relationship between short-term production and long-

term investment decisions.11 Producers make long-run investments in a single technology in the

upstream market to produce a homogeneous good subsequently, given an uncertain future demand.

Then, the downstream retailers aggregate and resell the goods at no cost to the final consumers.

Our model extends the literature by providing a novel analytical framework that includes a capacity

market equilibrium in addition to investment and short-term decisions. We derive an endogenous

supply function in the capacity market to do so. Namely, following the main theoretical view for

capacity markets12, we assume that producers offer their marginal opportunity cost of providing

10See, for instance, Hobbs et al. (2007) and Bushnell et al. (2017) Fabra (2018) Brown (2018).
11This model was first developed in a regulated context by Boiteux (1949) for the electricity sector; it was then

extrapolated to a market with private producers by Crew and Kleindorfer (1976). This model is widely used to
highlight the risk of underinvestment in production capacity.

12See for instance Creti and Fabra (2007).
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additional capacity. This opportunity cost equals the marginal loss of revenue incurred by the

investment level beyond the profit-maximizing equilibrium. Our modeling proposition is central

as any indirect effects generated by the capacity market can affect the expected revenue made

by the producers and can indirectly be captured during the formation of the supply function in

the capacity market. For the capacity equilibrium to emerge, we make specific assumptions for

the demand-side designs. The paper assumes a single buyer that chooses a demand function that

maximizes expected social welfare. In an extension, we also characterized the equilibrium when

retailers participate in the capacity market.

We start our analysis by introducing a price cap regulation, which can be interpreted as rep-

resenting the effect of different types of market distortions induced by a range of market failures

and regulatory interventions, which are typical for electricity, for instance, and can take the form

of price caps or regulations with a similar effect on price dynamics in practice.13 Such a price

cap reduces the expected revenues of producers and undermines investment compared to the level

needed to reach the welfare-maximizing level of installed capacity. The first market design regime

studied is the canonical capacity market. We build on the previous literature and the design found

in Léautier (2016) and Holmberg and Ritz (2020), which relies on the assumption that the capacity

market does not have any effect beyond increasing the investment level. Following the approach of

our paper, this canonical regime is similar to having a cost allocation regime based on a lump-sum

tax. In this case, even when considering the endogenous supply function in the capacity market,

the equilibrium of the market design always restores the first-best optimum given the system in-

efficiencies. Namely, providing that the demand function is intersecting the supply function at

the optimal level,14 the equilibrium price in the capacity market and the suboptimal price in the

subsequent markets is always equal to the price in an optimal system without price cap.15 We

13In their seminal paper, Joskow and Tirole (2007) demonstrate that wholesale markets with a price cap cannot
lead to the first-best solution. Following this approach, which also serves as a reference model in our paper, Zöttl
(2011) developed a theoretical result on investments under Cournot oligopoly with discrete investment and a price
cap. Using the same model, Léautier (2016) showed that market power from producers could also be a significant
cause of underinvestment. He also introduces a capacity market in the benchmark model where producers can
exercise market power. This paper serves as our reference for our implementation of the capacity market.

14In this paper and unlike Hobbs et al. (2007), we do not analyze the risk of having regulatory errors.
15We also demonstrate that this result also holds for other types of inefficiencies. The equilibrium capacity price

equals the expected lost revenue with the price cap. In the case of capacity as a public good, the price is equal to
the difference between the private value of the investment and its social value.
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then investigate the case in which the capacity price impacts the consumers at the margin. In

this case, the regime similarly allocates the capacity price as a unitary tax. However, the main

difference is that the marginal effect is endogenously determined at the equilibrium because the

capacity equilibrium price causes it. We show that the existence of the capacity market indirectly

affects the wholesale market by redistributing the different states of the world when the capacity

does not bind and bind and by lowering the consumer’s surplus. Therefore, we demonstrate that

the welfare outcome at the equilibrium under this regime is always lower than under the canonical

regime.

We then compare the two capacity cost allocation regimes by including inefficient rationing.

When the price cap is reached, the investment availability becomes a public good as the demand

becomes inelastic. Due to the impossibility of efficiently rationing consumers, they incur a sig-

nificant welfare loss.16 This additional assumption regarding inefficient rationing has significant

implications for comparing the two market designs at their respective equilibria. Indeed, under

this new assumption, we find that the indirect effect created by allocating the capacity price on

a unitary basis is now ambiguous for social welfare. Under canonical model specification, we find

that this market design constantly brings more social welfare at equilibrium than the initial allo-

cation regime. This is due to the interaction between each market design’s effects on the system

and the equilibrium investment level.

As a third step, we extend our analysis to implementing a regime where the regulator allocates

the cost based on actual retailers’ market shares. It allows us to introduce the ex-post temporality

in the current analysis, where the design of capacity markets considers the realized demand and

analyzes the effect of retailers’ market power in the model. We first show how this design affects

at the margin the retailers who play ’à la Cournot ’ on the retail market, and then we integrate the

new equilibrium into our model with investment decisions and the capacity market. We find that

this allocation creates an intermediary outcome between the unitary tax and the lump-sum tax

16Using the same initial model Holmberg and Ritz (2020) showed that additional capacity payment is necessary
when the system includes the public-good nature of the investments. Indeed, the inadequacy between capacity
and consumption generates negative externalities. Hence, to fully internalize the effect of capacity inadequacy, it
is necessary to generate an adder on the wholesale price. We also use in this paper the same representation of the
public-good nature of the investment. This effect of a price cap is also closely related to the concept of reliability
externality described by Wolak (2021).
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while having significant redistributional properties. Finally, we also study the effect of the retail

market structure on the equilibrium outcomes of the model.17 Depending on the assumptions

with respect to the model parameters and the inefficiencies assumptions, we find that lowering the

number of retailers can provide additional social welfare.

Finally, we analyze the case of a capacity market entirely based on the realized demand level.

To do so, retailers are obliged to cover the quantity sold on the retail market by buying directly on

the capacity market, given a penalty system. We focus on how retailers’ individual strategies can

form an aggregated demand function in the capacity market, and we analyze the optimal capacity

bought by retailers in the capacity market. We find that such an approach for the demand function

can provide the optimal level of investment under specific conditions. The market equilibrium under

this regime relies on the marginal value a capacity brings to retailers’ profit, which also depends

on the market structure in the retail market, the consumers’ demand function, and the penalty

system.

We provide in Section 2 a reminder of the benchmark model that describes investment decisions

in generation capacity. We implement the capacity market and build the theoretical supply function

in the same section. The different allocation methods are studied in Section 3 and in Section 4.

Section 5 provides the analysis of the retailers’ participation in the capacity market. To conclude,

we discuss possible extensions of the model in Section 6.

2 Benchmark model with capacity market

2.1 Environment

We consider an initial economic system with three types of agents: producers, retailers, and final

consumers. Producers invest in capacities to produce a homogeneous good. They sell the goods to

retailers on a wholesale upstream market. Then, retailers resell it to consumers on a downstream

retail market.

17We do not consider market power on the supply side in our paper, as it is well documented in the literature,
see for instance Zöttl (2011) and Leautier (2018) for its effect on investment decision with a price cap, see Léautier
(2016) for its effect with a capacity market.
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Model stages. We consider a four-stage non-cooperative game. First, producers participate

in the capacity market. Second, they choose the level of investment. Third, the wholesale market

clears. Fourth, the retail market clears.18 All decisions during the stages are publicly known and

are made simultaneously. We assume the final consumers’ demand is uncertain for all agents when

making investment decisions. On the other hand, the demand is known when the producers and

retailers sell the goods. Those two stages can be interpreted as a repetition of multiple states of the

world over a given period (for example, one year), drawn from the distribution (Leautier, 2018).

Every agent is to be risk-neutral and maximize expected profit. The game is solved by backward

induction.

Capacity

market

Investment

decisions

Wholesale

market

Retail

market

Unknown demand Known demand

1 2 3 4

Producers. We assume perfect competition on the supply side. Producers use a single tech-

nology to produce the good. It is characterized by a variable unitary cost c and a fixed unitary

investment cost r. We normalized the capacity level, so one unit of capacity allows to produce one

unit of the good. The total level of capacity installed after the first stage is k.

Retailers. We allow retailers to be either perfectly competitive or to compete à la Cournot

to resell the goods to final consumers. Still, they do not behave as an oligopsony in the wholesale

market. The imperfect competition is modeled using a finite number of retailers n. We model the

retail market as perfectly competitive in Section 3 and 4 to keep the analysis tractable. In Section

5, we introduce the effect of imperfect competition. The use of a finite number is always explicitly

indicated. We assume that retailers incur no cost when reselling from the wholesale market to the

18As discussed later, the stage order between capacity market and investment decisions does not matter in this
model.
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retail market apart from the wholesale price. Therefore, perfect competition implies that prices

are strictly equal in the wholesale and retail markets.

Demand. The following assumptions characterize final consumers in the retail market. They

have the same individual uncertain demand with an aggregate demand function D(p, t), t being

the state of the world. t can be understood as the demand level affecting only the intercept of

the demand function, not its slope. The demand uncertainty is a random variable characterized

by a distribution function f(t) and a cumulative distribution function F (t), which is common

knowledge. The inverse demand function is p(q, t), with q the quantity sold on the retail market,

such that D(p(q, t), t) = q. For convenience, we assume that ps(q, t) is the price on the wholesale

market, and p(q, t) is the price on the retail market. Moreover, the demand function have the

following properties19: ∀t ∈ [0,+∞) (i) p(q, t) = ṗ(q)+ε(t), (additive demand shock, which implies

that pqt = ptq = 0). (ii) pt(t) > 0 (states of the world are ordered), ptt(t) < 0 (demand decreases

less with higher states) (iii) pq(q) < 0 (decreasing inverse demand with respect to q) pqq(q) ≤ 0

(concave inverse demanded that implies decreasing marginal revenue) (iv) lim
q→+∞

p(q, t) < c (prices

can be below the marginal cost for some t ). To ensure producers investment in capacities, we need

additional conditions: p(0, t) > c+ r ∀t.

Price Cap. Essential goods are characterized by inefficiencies that prevent the market invest-

ment from reaching the first-best economically efficient. Two main reasons private investors do

not provide sufficient capacities: (1) the revenue collected on the market is insufficient to cover

their production and investment costs, (2) prices do not consider the positive externalities implied

by their availability during high demand periods. For the first rationale, we derived the ineffi-

ciency that typically characterized essential goods such as electricity: the suboptimality of the

wholesale price modeled via a price cap20. Further in this paper, we present two other rationales:

the public-good nature of capacity during peak-demand states of the world and a concentrated

19For most of the functions f(x, y), fx(x, y) =
∂f
∂x

(x, y), fxx(x, y) =
∂2f
∂x2 (x, y),fxy(x, y) =

∂2f
∂x∂y

(x, y)
20This modeling approach can represent both an explicit and implicit price cap. In the latter case, political

interventions due to the essential nature of the good can artificially alter the price. For instance, when the power
system operator needs to carry out technical interventions to avoid system failures. Those policy interventions, such
as price caps and non-economic distortions made by a public entity, lead to a Missing Money issue that prevents
sufficient revenue from being collected to cover costs (Joskow and Tirole, 2007). The effect of price cap regulation
was illustrated during the COVID-19 crisis in Italy when the government introduced a 50-cent cap on sales price
per mask, which eliminated the incentives to reconvert plants or increase production (Fabra et al., 2021).
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retail market represented via retailers’ market power. We implement a price cap denoted pw. To

create inefficiencies, the price cap must be binding for some states of the world, so it needs to be

below the highest price during the highest demand period; pw < lim
t→∞

p(0, t). However, to allow for

investment, we also need the price cap above the total unitary cost: pw > r + c.

Closed-form application.

Example 1. Continuous Time Suppose the final consumers’ demand function is linear, and

the uncertainty comes from the intercept. We define the inverse demand function as follows:

p(q, t) = a(t)− bq. Where a(t) is the uncertain intercept such that a(t) = a0 − a1e
−t. We assume

that t follows an exponential distribution, which is characteristic of goods with peak demand:

f(t) = λ1e
−λ1t with λ1 ∈ (0, 1].

Example 2. Discrete Time Suppose that there are only two states of the world. A high demand

state, such as the (linear) demand function of final consumers, is equal to ph(q) = a0 − bq, and a

low demand state such as the demand function is pb(q) = a0 − a1 − bq. We denote the probability

of having a low demand state as θ such as θ ∈ (0, 1), with 1 − θ the probability of having a high

demand state.

2.2 Market Equilibrium with a Capacity Market

We now describe the equilibrium of the game that consists of a series of equilibria for each stage

: (i) the retail market, (ii) the wholesale market, (iii) investment decisions, and (iv) the capacity

market. For now, we assume only a direct supply-side effect of the capacity market on the game

equilibrium via an increase in the producers’ profit. In the rest of the paper, the analysis of the

different designs follows the same backward induction but takes into account the link between

procurement design.

Fourth stage - Retail market. We assume that symmetric retailers can act strategically ’à la

Cournot ’ in the retail market, and they take the wholesale price as given. The retailer’s profit made
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on the retail market is πr
i (t) = qi(p(q, t) − ps(q, t)). The first-order condition gives the equality

between the marginal revenue and the marginal cost. In case of imperfect competition, the inverse

demand function of retailers on the wholesale market is a downward rotation at the intercept of

the final consumer demand function ps(q, t) = p(q, t)+ q
npq(q). When the retail market is perfectly

competitive, we have straightforwardly: ps(q, t) = p(q, t). For notation clarity, we assume first

perfect competition and use p(q, t) as general notation for demand.

Third stage - Wholesale market. Producers know the final consumer demand at this stage,

so the retailers’ inverse demand function is certain. The price is determined by the total investment

level k chosen during the first stage. We assume perfectly competitive producers, so when k is not

binding, the price is equal to the marginal cost c (off-peak periods). When k is binding, the price

rises above marginal to ensure supply equals demand (on-peak periods). We denote t0(k) the first

state of the world when capacity is binding, that is, when the price at the capacity level is equal

to the marginal cost: t0(k) = {t : p(k, t) = c}. We also define q0(t) as the quantity bought by final

consumers when the retail price is equal to the marginal cost, such that q0(t) = {q : p(q, t) = c}.

During off-peak periods, when t0(k) ≥ t, the price on the wholesale market is the marginal cost c,

and the price on the retail market is equal to p(q0(t)). During peak periods, when t > t0(k), the

demand function determines the price with p(k, t).

qs(t) =


q0(t) if t ∈ [0, t0(k)]

k if t ∈ [t0(k),+∞]

ps(t) =


c if t ∈ [0, t0(k)]

p(k, t) if t ∈ [t0(k),+∞]

Second stage - Investment decisions. At this stage, final consumer demand is unknown,

and so is the wholesale and retail price. The expected profit of producers is defined as the sum of

the expected profit made on the wholesale market and, if implemented, the realized profit on the

capacity market minus the investment cost :

Πs(k) = Πw(k) + Πc(k)− rk =

∫
t

qs(t)(ps(t)− c)dF (t) + pc(k)k − rk

11



The market equilibrium in terms of investment decisions with a perfect competitive framework

is given by following the first-order condition:

∂Πw

∂k
(k) + pc(k)− r = 0

The crucial term to determine the market equilibrium is the net expected marginal revenue

made on the wholesale market. We define ϕ(k) for this value for general notation, and it is

found by taking the derivative of the wholesale profit: ϕ(k) = ∂Πw

∂k (k). During off-peak periods,

producers are perfectly competitive, and prices equal marginal cost; therefore, the marginal revenue

is null. When the capacity is binding, it is the difference between the wholesale price and the

marginal production cost. The following equation formally defines this rent under the full efficiency

assumption (with no price cap):

ϕ0(k) =

∫ +∞

t0(k)

p(k, t)− c︸ ︷︷ ︸
on-peak k rent

dF (t) (1)

We turn now to the framework with a price cap. We introduce a second threshold tw0 (k). It is

the first state of the world when the price cap is binding, that is, when the price at the capacity

level is equal to the price cap: tw0 (k) = {t : p(k, t) = pw}. We also define qw0 (t) as the quantity

bought by retailers (or consumers under perfect competition) when the price is equal to the price

cap, such that qw0 (t) = {q : p(q, t) = pw}.

ϕw
0 (k) =

∫ tw0 (k)

t0(k)

p(k, t)− c︸ ︷︷ ︸
on-peak k rent

dF (t) +

∫ +∞

tw0 (k)

pw − c︸ ︷︷ ︸
on-peak pw rent

dF (t) (2)

The conditions on pw relatively to the marginal cost c ensure that tw0 (k) > t0(k).
21

First stage - Capacity Market.

21Under our framework of a single producing technology and without market power on the supply side, the price
cap is only binding during on-peak periods. See Zöttl (2011) and Leautier (2018) for a study of price caps with
market power and multiple technologies.
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We turn to the definition of the equilibrium pc of the capacity market. For such equilibrium

to exist, we make a market condition following Léautier (2016): There are no short sells, meaning

that producers cannot sell more capacity than they own. The existence of the capacity market

and the no short-sell assumption leads to the following observations: (i) Decision timing does not

matter given our current setting: results still hold if the capacity market is set before or after the

investment decision as long as it is before the final consumers’ demand is known. (ii) It is optimal

for producers to offer all their capacities if the first condition holds.22

The market equilibrium is found via the intersection between the demand and supply functions

offered by producers. For now, we remain agnostic on determining the demand function. Except

for 5.2, the demand function is assumed entirely exogenous in the sense that it is determined by a

Social Planner that seeks to maximize welfare and consists in a vertical line.

We build the supply function based on the assumption that producers offer their marginal profit

loss associated with the capacity market’s participation. The common approach in the literature

represents the cost of investing beyond the optimal capacity level. However, to our knowledge, this

is the first time a supply function in a capacity market is directly modeled using the benchmark

framework. As we assume perfect competition in the wholesale market compared to Léautier

(2016) and Zöttl (2011), capacity choices have no marginal effect on the rent. Indeed, the rent

appears only when total capacity is constraining under perfect competition.23 The full profit with

a capacity market for a producer is Πs(k) = ϕ(k)k − rk + pc(k)k. Under perfect competition, the

first-order condition gives ϕ(k)− r + pc(k) = 0. Therefore, the capacity market’s supply function

equals the marginal cost associated with the deviation from the market investment level k̄, which

would have been made without the capacity market.

22The intuitions behind the extension of Léautier (2016)’s proposition in the paper are as follows: without a direct
link between the quantity exchanged in the capacity market and the investment level (i.e., short sell condition); the
former does not alter the producer’s marginal profit with respect to the latter. Hence, the capacity market does not
have any effect on the investment decision. For observation (i), the result is straightforward as we do not include
any specification in terms of investment dynamics (e.g., the time to build the investment) and information structure
(e.g., the uncertainty of the demand level can reduce when the investment decision is closer to the wholesale market).
For observation (ii), the proof relies on the result that the supply and demand function’s outcome in the capacity
market leads to a unique symmetric equilibrium as the profit function is also concave.

23Under imperfect competition on the supply side, the rent also exists due to market power and can appear before
the total capacity is binding.
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Definition 1. We denotes the supply function X(k) and the inverse supply function X−1(pc) such

that X−1(X(k)) = k. The supply function on the capacity market is defined as follows:

X(k) =


0 if k ≤ k̄

r − ϕ(k) k > k̄

(3)

With k̄ the market equilibrium given by r = ϕ(k̄).

Below k̄, the marginal cost is positive, and the supply is null. Indeed, as the wholesale market’s

profit function is concave, any marginal revenues on the left side of the optimum are above the

marginal cost of r. The marginal revenue is below the marginal cost on the right side of the optimal

investment level. Therefore, any deviation to the right creates a positive opportunity cost.24 This

approach is particularly relevant as it fully characterizes the effect of different market design regimes

in the economic system. In other words, if a regime changes the expected revenue made in the

wholesale and retailer market, we can consider its feedback effect on the supply function in the

capacity market. For a given demand function, the equilibrium of the capacity market is simply

found by equalizing the demand function to the supply function. Figure 1 gives an example of

how supply functions are built in the capacity market for different assumptions (without or with

a price cap and for different values of the price cap). Note the kinks at the bottom for curves;

they represent the level of investment that maximizes expected profits; therefore, on the left, the

profit is concave, which implies a null supply function. For sufficiently high values of value k, the

capacity level does not bind with positive probability. Hence, no rent is generated on the wholesale

market. This explains the convergence towards the marginal investment costs.

Therefore, the equilibrium of the game comprises : (i) a wholesale demand function adjusted

for the retailers’ market power, if implemented, (ii) a wholesale schedule of prices and quantity for

each state of the world, (iii) an investment decision based on the expected wholesale market revenue

24Our approach to the supply function in the capacity market is similar to the theory of supply function equilibria
where bidders offer a function such that each point on this function maximizes their profit/utility (Klemperer
and Meyer, 1989). In our paper, the supply function in the capacity market is built such that each producer is
indifferent between providing their investment market equilibrium or any investment on the curve in return for the
corresponding capacity price.
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Figure 1: Illustration of the capacity market equilibrium given a demand k with the linear contin-
uous model.

and from collected capacity market revenue (iv) a capacity market equilibrium price coming from

a supply function made by producers and a demand function corresponding to a specific level of

investment chosen by the social planner.

In the rest of this section, we describe two benchmark equilibria: the first-best level without

any form of inefficiency and the second-best market equilibrium with a binding price cap in the

absence of a capacity market.

2.3 First-Best without a capacity market

We find the optimal first-best investment level25 as the value of k that maximizes the expected

social welfare without any form of inefficiency. For general notation, we defineW (k) as the expected

social welfare, comprising the consumer, producer, and retailer’s surplus. Under the full efficiency

assumption, we defined k∗0 as k∗0 = max
k

W0(k), with W0(k) formally defined as follow.

25We use the term first-best, socially optimal, and welfare-maximizing interchangeably.
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W0(k) =

∫ t0(k)

0

∫ q0(t)

0

(p(q, t)− c)dq︸ ︷︷ ︸
off-peak weflare

dF (t) +

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq︸ ︷︷ ︸
on-peak weflare

dF (t)− rk

The maximum k∗0 is found by equalizing the marginal surplus gain from an increase of capacity

to the marginal cost :

ϕ0(k) =

∫ +∞

t0(k)

(p(k, t)− c)dF (t) = r (4)

Under the initial assumptions, the expected social welfare is concave with respect to the level of

investment k, which ensures the existence of a maximum (∂ϕ0

∂k ≤ 0). In the absence of a price cap

or any other inefficiency, it is straightforward that the market equilibrium is the first-best solution

to maximizing the expected social welfare as the private marginal revenue equals the marginal

social revenue.

2.4 Second-best without a capacity market

We now define the market equilibrium with a price cap but without a capacity market. The

price cap does not change the social welfare function at the marginal, equal to W0(k), as it only

redistributes surpluses between consumers, producers, and retailers. Without a capacity market,

the market equilibrium kw0 is found by equalizing the expected marginal private profit made on

the wholesale market to the marginal investment cost:

ϕw
0 (k) =

∫ tw0 (k)

t0(k)

(p(k, t)− c)dF (t) +

∫ +∞

tw0 (k)

(pw − c)dF (t) = r (5)

The lemma 1 shows that a price cap in the wholesale market lowers the market investment

level and increases inefficiency. We also provide the optimal payment associated with restoring the

optimal investment level. It is equal to the expected difference between what should have been the
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wholesale price and the price cap when it is binding — this is commonly known as the ”Missing

Money”.

Lemma 1. A binding price cap leads to a lower installed capacity than the optimal investment

level given by the social welfare maximization: kw0 ≤ k∗0 as well as lower expected welfare: W (k∗0) ≤

W (kw0 ). The optimal capacity payment zw(k) is :

zw(k) =

∫ +∞

tw0 (k)

(p(k, t)− pw)dF (t) (6)

Proof. See Appendix

3 Capacity cost allocation under price cap

In this Section, we study the effects of the allocation of the capacity price on the system equilib-

rium described previously. From an implementation perspective, assume that a Single Buyer (for

instance, the Social Planner) procures all the capacity on the capacity market. Then, the Single

Buyer can choose two general regimes to pass through the procurement cost to the consumers

26: (i) lump sum tax, which boils down to assuming a system equilibrium kept unchanged by the

allocation of the capacity price (exogenous design) (i) a variable tax, which increases the price

of the good and generates a specific effect on the system equilibrium (endogenous design). This

Section proposes a way of solving the new equilibrium and compares the two outcomes with solely

missing money inefficiencies created by the price cap. Section 4 extends this analysis by including

inefficient rationing.

3.1 Exogenous design

We do not make any assumptions about the identity of the (single) capacity buyer in this paper

as it is outside the scope. We assume that this entity forecasts the future expected demand of

26We do not differentiate retailers or consumers in this Section as we assume perfect competition.
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final consumers, and then it builds the demand function in the capacity market to maximize the

expected social welfare. In our analysis, this demand function corresponds to a vertical line equal

to the investment level that maximizes the expected social welfare. Indeed, perfect competition

on the supply side implies that producers always offer their marginal cost, and the shape of the

demand function does not matter. Finally, to balance its budget, it transfers the full purchasing

cost to the retailers using an exogenous ratio or directly to consumers via a lump-sum tax. We

formally describe this market design regime as follows:

Assumption 1. A single entity chooses a level of investment to buy on the capacity market that

maximizes W (k) at a price pc(k) given by the supply function described in 3. Then, it allocates

the full cost kpc(k) to the retailers or directly to the consumers without any dependence on the

expected and realized final demand level.

This assumption corresponds to the traditional approach used in the literature on the capacity

market. We call this market design the exogenous regime because (i) the allocation of capacity

costs does not depend, for instance, on retailers’ realized strategy but rather on exogenous factors

such as their past market share (ii) the design does not depend on realized demand for the final

good. In other words, this regime only describes the capacity markets’ direct effect via the incentive

to invest by the capacity price. There is no effect on the final demand because this remuneration is

simply a surplus transfer from consumers to producers. This approach’s result is that the capacity

price equals the optimal payment, allowing the restoration of an optimal level of capacity when

the vertical demand function for capacity is calibrated to k∗0 . Whatever the type of inefficiency is

considered.27 This result is described in the following Proposition. It implies that the cost of a

capacity market is strictly equal to the transfer necessary to restore the optimal capacity level.

Proposition 1. Under an exogenous allocation market design, the clearing price in the capacity

market at the first-best investment level k∗0 given by the supply function Xw
0 (k) is always equal to

the optimal payment zw(k) needed to restore efficiency.

27We demonstrate in the Appendix that the Proposition can be expanded to the inefficiencies created by retailers’
market power and by the public-good nature of capacities.
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Figure 2: Supply function and equilibrium capacity prices on a capacity market under an exogenous
regime with linear demand and exponential distribution.

Proof. See Appendix

This result highlights the discussion between implementing a price or a quantity instrument to

resolve the market inefficiencies or constraints (Weitzman, 1974; Holmberg and Ritz, 2020). We

show in this Proposition that the outcome of the capacity market is strictly equivalent to a capacity

price set by the regulator defined in equation 6. Under this regime, the exogenous approach is

optimal because it gives the right investment level given the inefficiencies.

We illustrate Proposition 1 with the model specification of Example 1. In figure 2, we show

two supply functions on a capacity market. When a price cap is introduced, the marginal cost of

providing an additional capacity increases, which shifts the supply curve to the left (blue curves),

and the market investment level kw0 decreases compared to the first-best investment level k∗0 . We

also include the function associated with the optimal payment as described in equation 6 (black

curves). As demonstrated in Proposition 1, the capacity price at the optimal investment level k∗0

equals the optimal payment.
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Our model can also provide some comparative statics on the capacity price given the specifica-

tion of Example 1. For instance, when only the price cap is considered in the model, the results are

intuitive and in line with previous works, with the capacity price always being positively impacted

by an increase in the demand intercept or by the product costs (variable and fixed). In contrast,

the price cap has a negative effect.

3.2 Endogenous allocation

We introduce a new allocation regime for the capacity market. In this case, capacity prices

marginally impact the final consumer demand via the allocation of the capacity price. The setting

is similar to the previous one, with a single entity forecasting the future expected demand and

building the demand function in the capacity market. We formally describe this market design

regime as follows:

Assumption 2. A single entity chooses a level of investment to buy on the capacity market that

maximizes W (k) at a price pc(k) given by the supply function described in 3. Then it allocates the

full cost kpc(k) either to the retailers or directly to the consumers such that the new final demand

for the good is equal to D(p, t) = p(q, t)− pc(k).28

Compared with the previous setting without this indirect effect, the first previous case can be

understood as an increase of the fixed part in a two-part tariff (or a lump sum tax). In contrast, the

second case in this subsection can be understood as an increase of the variable part (or a unitary

tax). However, the main difference with a price instrument such as a tax is that the capacity price

and investment decisions emerge from profit maximization from the producers and the single buyer

28This allocation rule is compatible with the budget constraint of the single entity. Another way of expressing
this allocation rule would be using the value pc(k) q

k
. While this allocation changes the numerical result, it does not

impact the fundamental results of this section.
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choice of the demand function. Therefore, we formally demonstrate the existence of the indirect

effect by repeating the steps of the previous model and using backward induction.

Third stage - Retail market. Let pc(k) (or pc for notation clarity) be the capacity price adder

for final consumers, identical to a unitary consumption tax as the value is sunk at this period. The

final consumer demand function shifts downward with its new value equal to p(q, t) − pc(k). k is

still the quantity bought on the capacity market by the entity at a price pc(k). We denote t1(k)

and q1(k, p
c) the new thresholds for respectively the states of the world between on-peak/off-peak

periods such that t1(k) = {t : p(k, t) − pc(k) = c}, and the corresponding quantity such that

q1(t, k) = {q : p(q, t) − pc(k) = c}. We also define the thresholds for the price cap with tw1 (k, p
c)

the first state of the world when the price cap is biding under the endogenous design, that is

tw1 (k, p
c) = {t : p(k, t)− pc(k) = pw}. We also define qw1 (t) as the quantity when the price is equal

to the price cap, such that qw1 (t) = {q : p(q, t)−pc(k) = pw} For now, we assume that the capacity

price exists. We formally demonstrate it in the proof of Lemma 3.

Second stage - Wholesale market While the demand is always lower or equal to the initial

demand function, the impact on the expected social welfare is not trivial. The Lemma 2 summarizes

the main insight and states that the new welfare function is always lower or equal to the exogenous

case.

Lemma 2. Allocating the capacity price at the margin only affects the share between on-peak

and off-peak periods and the expected surplus size during off-peak periods. Namely, only the

occurrence of the two periods t0(k) and the intersection between the demand function and the

marginal cost q0(t) change, the welfare function becomes:

W1(k, p
c) =

∫ t1(k,p
c)

0

∫ q1(t,p
c)

0

(p(q, t)− c)dqdF (t) +

∫ +∞

t1(k,pc)

∫ k

0

(p(q, t)− c)dqdF (t)− rk

Proof. See Appendix
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We can rewrite the equation by showing the initial welfare function without endogeneity:

∆W1(k, p
c) = W0(k)−W1(k, p

c). With :

∆W1(k, p
c) =

∫ t0(k)

0

∫ q0(t)

q1(t,pc)

(p(q, t)− c)dq︸ ︷︷ ︸
∆ in surplus

dF (t) +

∫ t1(k,p
c)

t0(k)

∫ k

q1(t,pc)

(p(q, t)− c)dq︸ ︷︷ ︸
∆ in occurrence

dF (t) > 0

The first part of ∆W1(k, p
c) represents the loss when it is off-peak periods for both cases (indeed,

we have t0(k) ≤ t1(k, p
c) as lower demand always means a higher chance of being off-peak): the

consumers fully support the loss as producers receive the marginal cost. The second part represents

the loss when the capacity level is such that it is an off-peak period with the endogenous case and

an on-peak for the other case. Therefore, the loss is shared between consumers and producers, the

former sustaining a higher price and receiving a lower margin. There is no loss when both cases are

in peak periods, as the quantity on the market is strictly equal to the capacity installed. Hence,

recovering the capacity cost allocation only during peak periods does not generate a deadweight

loss.

We continue the endogenous regime analysis by defining the economic system’s main equilibrium

variables. While Proposition 2 and Lemma 2 underline the effects of this regime on the regulatory

objective function, we show in the following analysis its effect on market equilibrium, namely the

outcome in terms of bidding behavior in the capacity market and in terms of prices.

First stage (i) - Investment decisions Producers make their investment decisions based on the

expected net revenue, composed of the expected rent and the capacity revenue. The net revenue is

similar to the exogenous case, except for the new state of the world thresholds and the wholesale

price. It is defined in the following equation.

ϕw
1 (k, p

c) + pc =

∫ tw1 (k,pc)

t1(k,pc)

( p(k, t)− pc︸ ︷︷ ︸
consumer net demand

−c)dF (t) +

∫ +∞

tw1 (k,pc)

(pw − c)dF (t) + pc
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A sufficient condition for market equilibrium in terms of investment decisions is ∂pc

∂k ≥ 0. In that

case, the expected profit is concave, and the second order is satisfied. The derivative of the capacity

price depends on underlying assumptions we discuss in the next stage. We also formally prove in

the Appendix that ∂pc

∂k ≥ 0. Note that at the second-best market equilibrium with a price cap k∗0 ,

the supply function is identical under the two market design regimes (ϕw
0 (k

w
0 , p

c) = ϕw
1 (k

w
0 , p

c)).

Indeed, there is no opportunity cost of being at kw0 . The capacity price is null, which implies no

indirect effect.

First stage (ii)- capacity market When a producer participates in the capacity market, it

bids its marginal opportunity cost without the capacity revenue (but it takes into account its

indirect effect on the demand) equal to r − ϕw
1 (k, p

c). Therefore, following the previous stage, the

equilibrium is defined with the equality X(k) = r − ϕw
1 (k, p

c). Lemma 3 states how the equilibria

are found. It underlines the endogenous nature of this regime where the choice of capacity is both

on the supply and demand side of a capacity market and has indirect effects. In other words, the

endogeneity of the regime also changes the bidding behavior in the capacity market compared to

the exogenous case.

Lemma 3. For any values of k ∈ [kw0 ,+∞), there exists a value pc such that we have X1(k, p
c) =

pc. X1(k, p
c) is the endogenous supply function in the capacity market:

X1(k, p
c(k)) = r −

(∫ tw1 (k,pc(k))

t1(k,pc)

(p(k, t)− pc(k)− c)dF (t) +

∫ +∞

tw1 (k,pc(k))

(pw − c)dF (t)

)
(7)

(ii) Moreover, the supply function is always higher under the endogenous regime than under the

exogenous regime: X1(k) ≥ X0(k)

Proof. See Appendix

Figure 3 describes the change in the supply function when considering the indirect effect of the

equilibrium capacity price on the consumers.

23



Figure 3: Supply functions in the capacity market for the exogenous and endogenous market regime
and for different values of the price cap.

The solution to the fixed-point problem comes from the interaction between the capacity price

and the demand in the wholesale market. The proof relies on the observation that for a relatively

high level of capacity price, the demand is decreased such that at one point, the capacity and the

price cap never bind in expectation. In that case, the existence of a fixed point is always ensured.

For other values of the price cap, a fixed point might exist, but the shape of the supply function

prevents sufficient conditions from emerging.

We have demonstrated the effect of the endogenous market design on the retail and wholesale

market and the condition for an investment market equilibrium and a supply function to be well

defined. To fully describe the system equilibrium, we analyze the level of investment bought on

the capacity market by the Single Buyer (and therefore installed by producers). The proposition

2 describes the new optimal investment level that maximizes the expected social welfare given

this endogenous regime. It has a strong implication as we state that this regime also modifies the

objective for the regulator in terms of the final investment level.29 Moreover, we find that the

endogenous regime is always worse than the exogenous regime regarding social welfare.

29Therefore, the single buyer also needs to take into account the indirect effect while choosing the demand function.
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Proposition 2. (i) The new first-best solution in terms of investment level under the endogenous

regime exists if the initial assumptions hold.

(ii) If it exists it solves k∗1 = {k : ϕ1(k) = r}, with ϕ1(k) defined as follow

ϕ1(k) =

∫ t1(k)

0

∂q1(t, k)

∂k
pc(k)︸ ︷︷ ︸

price effect -

dF (t) +

∫ +∞

t1(k)

(p(k, t)− c)︸ ︷︷ ︸
quantity effect +

dF (t)

(iii) k∗1 is always lower than the first-best solution under the exogenous level (k∗1 ≤ k∗0). The social

welfare at the optimal investment level is also always lower than the social welfare at the optimal

investment level under the exogenous regime (W1(k
∗
1) ≤ W0(k

∗
0)).

Proof. See Appendix

The condition in part (i) of the proposition relates to the concavity of the expected social welfare

and the transmission channels of the capacity price in the expected welfare function. The first

derivative, represented in ϕ1(k), shows that when the capacity level increases: (a) it decreases the

unconstrained quantity q1(t, k), where at this value the social surplus is equal to the capacity price

(p(q1(t, k), t) − c = pc(k)), this term is therefore negative, (b) it generates an additional surplus

during on-peak periods which is equal to p(k, t)− c, which is positive, (c) to invest in an additional

surplus, one need to sustain the investment cost r. All other marginal effects cancel each other.

This marginal value needs to decrease in k to induce a concave expected social welfare. In the

proof, we compute the second derivative; we show that the effect at the limits of the respective

integrals of ϕ1(k) are easily found to be negative, as well as the marginal change of (b), where a

decreasing demand function is sufficient. However, the marginal effect on the equilibrium quantity

q1(t) is more complex. It is directly relative to the shape of the demand function concerning the

uncertainty and the distribution function f(t). This is ensured by having ∂
∂k

[
∂q1(t,k)

∂k pc(k)
]
≤ 0,

that is the marginal loss sustained during off-peak periods, accounting for the indirect effect of

the endogenous regime is decreasing. A convex capacity market supply function is a sufficient

condition to have ∂2q1(t,k)
∂k2 to be decreasing. The convexity of the capacity market supply function

is ensured by having the expectation factor ∆F1(k) =
∫ tw1 (k)

t1(k)
dF (t) to be increasing with k that
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is:
f(tw1 (k))
pt(tw1 (k)) ≥ f(t1(k))

pt(t1(k))
. It has different implications depending on the assumptions regarding f(t)

and the effect of t on the inverse demand function. Following the classic assumption of Example

1, the exponential distribution implies that f(tw1 (k)) < f(t1(k)), it is less likely for the price cap

to binds compared to the capacity k. On the other hand, if ptt < 0, that is, the inverse demand

function increases less for higher states of the world (at the margin), it implies that tw1 (k) increases

more than t1(k), as it is more likely to binds (at the margin). If the second effect dominates the

first, then
f(tw1 (k))
pt(tw1 (k)) ≥ f(t1(k))

pt(t1(k))
. The policy result of (iii) stems from the analysis of the derivative

of ∆W1(k) with respect to the level of investment k, which is always positive. The condition for

the existence of a first-best investment level is sufficient and implies that ϕ1(k) is decreasing with

respect to k (i.e., the expected social welfare W1(k) is concave).

We conclude this section by studying the capacity market equilibrium price. From Lemma 3

and Proposition 2, we know that implementing the endogenous regime (i) lowers the investment

level and (ii) increases the supply function on the capacity market. It implies the regime has an

ambiguous effect on the capacity market equilibrium: endogenous capacity prices can be higher

or lower than exogenous capacity prices, even though the capacity quantity is always lower. It

has significant policy implications as the capacity price is politically sensitive as it can make up

a significant part of producers’ revenue and consumers’ bills. Figure 4 shows how the indirect

effect can lead to opposite results in terms of equilibrium prices: the capacity price raises the

supply function but also decreases the investment level that maximizes the expected social welfare.

Therefore, the new equilibrium price can either be above or below the exogenous equilibrium.

We define in Lemma 4 Sufficient condition such that the capacity price is always higher under the

endogenous regime compared to the exogenous one. In claim 1, we provide numerical-based results

under the exponential and discrete model specifications.

Lemma 4. The capacity price at the first-best investment level is higher under the endogenous

regime compared to the exogenous regime if the following condition holds

1

2

∑
i

(∆Fi(k
∗
i )) (p

c(k∗1)−∆p(k∗))
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Figure 4: Caption

With ∆Fi(k
∗
i ) =

∫ twi (k∗
i )

ti(k∗
i )

dF (t) and ∆p(k∗) = p(k∗1 , t)− p(k∗0 , t)

Proof. See Appendix

The expression is positive if the endogenous capacity price pc(k∗1) is higher than the difference

between the deterministic part of the inverse demand function. Note that the first part of the

model is always positive and represents the average conditional expectation for any state of the

world when the capacity binds but not the price cap. The intuition of the proof is based on the

relationship between the expected wholesale price producers receive and the sum of the variable

and fixed costs. At the first-best investment level for both market design regimes, the sum of the

capacity price and the expected wholesale price is equal to the marginal costs (c+r). As the latter

are constants, it is sufficient to study the value of the expected wholesale price to conclude the value

of the capacity price at the first-best investment level for the two regimes. The previous analysis

shows that the indirect effect induced by the endogenous market design modifies the demand and,

by extension, the expected prices in the wholesale market. The general condition in Lemma 4 is

sufficient. The expected prices in the wholesale market are always lower under the endogenous

market design, hence ensuring a higher capacity price.
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Close-form answers need additional conditions, notably on (i) the demand function (ii) the un-

certainty distribution. However, except for the discrete example, the endogenous nature of the

capacity price prevents having a clear close-form expression of the conditions in Lemma 4, even for

the linear demand. Numerical simulation shows that the chosen example always leads to a higher

capacity price under the endogenous regime.

Claim 1. Under the exponential and discrete distribution, the condition in Lemma 4 always holds.

That is, the equilibrium capacity price under the endogenous regime is always higher than under

the exogenous regime.

4 Capacity cost allocation with inefficient rationing

4.1 Inefficient rationing and Second-Best

We now introduce the public-good nature of capacity during peak demand via inefficient rationing.

In this section, we use this rationale to revise the comparison between the endogenous and exoge-

nous designs for capacity markets. In section 5, we will also keep the inefficiency to analyze other

options in the design of capacity markets.

When binding at the price cap level, the price-elastic demand becomes inelastic.30 Therefore, we

face the same rationing problem as in the literature with limited production capacities and inelastic

consumers (see, for instance, Joskow and Tirole (2007)).31 The absence of efficient discrimination

between consumers with a heterogeneous willingness to pay implies that investment availability is

a public good when the price cap is binding. Therefore, it is underprovided by producers when

they make their investment decisions. The literature describes the cost of involuntary rationing

30The introduction of retailers into the model in the rest of the paper does not change the intuition. At a price pw,
the Cournot competition between the retailers incites them to ask for an equilibrium quantity above the investment
value. Then we assume that a regulated entity ration the retailers, such as their final profit and realized sales, are
physically constrained by the investment level.

31This inefficiency is associated with the existence of a Missing Market issue under which producers consider their
revenue insufficient to invest optimally (Newbery, 2016). This can be caused by hedging markets being incomplete
(De Maere d’Aertrycke et al., 2017), or because of externalities associated with the public-good nature of investment
and consumption choices (Holmberg and Ritz, 2020), innovation spillovers, and climate change.

28



in various ways. Joskow and Tirole (2007) shows that it depends on whether the rationing is

anticipated or not. Leautier (2018) finds that the effect of involuntary rationing can be different

if it impacts the expected demand level. From a modeling perspective, Holmberg and Ritz (2020)

uses a general function J(.) to represent this negative externality. The function depends on the

delta between the quantity bought at a price equal to the price cap and the investment level. For

general notation, we note this cost M(k), defines as follow :

M(k) =

∫ +∞

tw(k)

J(t, k)dF (t) (8)

With ∆k a function of the difference between the installed capacity k and the quantity bought by

retailers at the price cap qw (qw0 (t) or qw1 (t) depending on the chosen regime). To illustrate the

inefficient rationing cost, we use the following assumption.

Assumption 3. Suppose that consumers sustain an additional cost proportional to the share of

consumers selected indifferently who are forced to stop consuming based on their expected surplus.

The expected cost is equal to :

M(k) =

∫ +∞

tw(k)

qw − k

qw

∫ qw

0

(p(q, t)− pw)dqdF (t) (9)

In this case, the function J(t, k) can be decomposed into two components: the rationing ratio

qw(k)−k
qw and the consumer welfare at the quantity asked at the price cap (and excluding capacity

payments)
∫ qw

0
(p(q, t) − pw)dq. This example resembles the rationing model used in (Léautier,

2014). can also be interpreted as follows. Assume that there exists a continuum of consumers

such that each point on the inverse demand function p(q, t) represents its marginal willingness

to pay for the good. In that case, inefficient rationing implies that each consumer sustains the

same cost proportionally to its marginal willingness to pay. This illustration leads to J(k, tw) = 0.

Without any difference between the capacity and quantity values, inefficient rationing implies no

cost. Regarding the sign of the cost and its derivatives, it seems natural to have ∂M(.)
∂k ≤ 0, such

that the closer the capacity level is to qw, the lower is the cost. The second derivative of the

29



expression also matters. For instance, Holmberg and Ritz (2020) assumes a convex function :

∂M(.)
∂k ≥ 0. However, as discussed below, our assumption is insufficient to satisfy this condition.

We start with extending the benchmark model with inefficient rationing, which also describes the

exogenous regime as it does not generate indirect effects. Then, we compare the outcomes under

both regimes. First, we express the expected welfare under the exogenous design with inefficient

rationing:

W bo
0 (k) = W0(k)−

∫ +∞

tw(k)

qw − k

qw

∫ qw

0

(p(q, t)− pw)dqdF (t)

=

∫ t0(k)

0

off-peak welfare︷ ︸︸ ︷∫ q0

0

(p(q, t)− c) dq dF (t) +

∫ tw0 (k)

t0(k)

on-peak k welfare︷ ︸︸ ︷∫ k

0

(p(q, t)− c) dq dF (t)

+

∫ +∞

tw0 (k)

∫ k

0

(pw − c) dq︸ ︷︷ ︸
producer surplus

dF (t) +

∫ +∞

tw0 (k)

k

qw

∫ qw0 (t)

0

(p(q, t)− pw) dq︸ ︷︷ ︸
consumer surplus - M0(k)

dF (t)− rk

The terms of the second line represent the expected social welfare for any state of the world where

the price cap is not binding. The first term in the third line is the producers’ expected revenue,

as we assume no rationing cost on the supply side. Finally, the last term on the third line is the

expected welfare net of the rationing cost and the producer revenue. Note that this differs from

the consumer surplus. It does not consider the transfer between consumers and producers from

the capacity market, as it is neutral from a social welfare consideration. Compared to the initial

inefficiency of a price cap, the social cost of rationing directly affects the social welfare function.

On the other hand, producers’ expected marginal rent collected on the wholesale market remains

unchanged when we include inefficient rationing, which only affects consumers’ welfare.32

The absence of direct supply-side effects of inefficient rationing allows us to study our environment’s

last stage directly. That is, how the single buyer chooses the level of investment in the capacity

market. We denote kbo0 the optimal level of investment that maximizes the expected social welfare,

such that kbo0 = {k : ϕbo
0 (k) = r}, with ϕbo

0 (k) as usually defined as the marginal expected social

welfare with respect to the investment level k :

32Some authors do include those costs in the producer profit, using a fixed reputational cost (Llobet and Padilla,
2018) or a market shutdown during which producers also lose profit (Fabra, 2018)
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ϕbo
0 (k) =

∫ tw0 (k)

t0(k)

(p(k, t)−c) dF (t)+

∫ +∞

tw0 (k)

(pw−c) dF (t)+

∫ +∞

tw0 (k)

1

qw0 (t)

∫ qw0 (t)

0

p(q, t)− pw dq︸ ︷︷ ︸
∆ in net consumer surplus

dF (t)

The first and second parts of ϕbo
0 (k) are common to ϕ0(k). An increase of k (1) allows a marginal

gain when the capacity is binding for consumers and producers, and (2) allows an additional

rent for the producers when the price cap is binding. The last term represents consumer gains

when the price cap binds the net of the marginal rationing cost. The assumption with respect

to the expression of the cost allows having concave expected welfare as
∫ +∞
tw0 (k)

1
qw0 (t)

∫ qw0 (t)

0
p(q, t)−

pw dqdF (t) is decreasing with k via
∂tw0 (k)

∂k > 0.

The following Lemma concludes on the difference between the initial inefficiency caused by a price

cap and the consequences of inefficient rationing. The optimal payment to restore the first-best

solution equals the marginal value of an additional capacity for the system, which decreases the

cost of involuntary rationing.

Lemma 5. When the price cap induces involuntary rationing, the inefficiency is greater than with

voluntary rationing. The optimal investment level is greater kbo0 ≥ k∗0 , and the expected social

welfare at the optimum is lower W (k∗0) ≥ W bo
0 (kbo0 ). The optimal capacity payment zbo0 (k) is :

zbo(k) = −∂M(k)

∂k

Proof. See Appendix

We now turn to analyzing the model under the endogenous regime given the rationing cost. We

first discuss the differences with the exogenous case, and then we describe the implications for the

regulator. The expected welfare function under the endogenous regime is equal to the following:
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W bo
1 (k) =

∫ t1(k)

0

∫ q1(t,k)

0

(p(q, t)− c) dqdF (t) +

∫ tw1 (k)

t1(k)

∫ k

0

(p(q, t)− c) dqdF (t)

+

∫ +∞

tw1 (k)

∫ k

0

(pw − c) dqdF (t) +

∫ +∞

tw1 (k)

k

qw1 (t, k)

∫ qw1 (t,k)

0

(p(q, t)− pw) dq︸ ︷︷ ︸
consumer surplus - M1(k)

dF (t)

We denote kbo1 the optimal level of investment such that kbo1 = {k : ϕbo
1 (k) = r}, with ϕbo

1 again

defined as the marginal expected social welfare with respect to the investment level k :

ϕbo
1 (k) =

∫ t1(k)

0

∂q1(t, k)

∂k
pc(k)dF (t) +

∫ tw1 (k)

t1(k)

(p(k, t)− c) dF (t) +

∫ +∞

tw1 (k)

(pw − c) dF (t)+∫ +∞

tw1 (k)

1

qw1 (t, k)

∫ qw1 (t,k)

0

(p(q, t)− pw) dq − k

(qw1 (t, k))
2

∂qw1 (t, k)

∂k

∫ qw1 (t,k)

0

p(q, t)− p(qw1 , t)dqdF (t)

The first line is common to ϕ1(k). An increase of k (1) increases the capacity price, which decreases

the expected surplus during off-peak periods, (2) allows a marginal gain for consumers and pro-

ducers when the capacity is binding, and (3) allows an additional rent for producers when the price

cap is binding. The second line represents the interaction between the consumer surplus (without

the capacity price) and the rationing cost. We develop below the derivative of M1(k) with respect

to k

∂M1(k)

∂k
=

∫ +∞

tw1 (k)

−qw1 (t, k)− k
∂qw1 (t,k)

∂k

(qw1 (t, k))
2︸ ︷︷ ︸

∆ in rationing ratio

∫ qw1 (t,k)

0

(p(q, t)− pw) dq − qw1 (t, k)− k

qw1 (t, k)︸ ︷︷ ︸
price effect

pc(k)dF (t)

The marginal consumer surplus when the price cap is binding has a similar interpretation as

the marginal consumer when the capacity does not bind (first term in ϕbo
1 (k)). It is equal to∫ +∞

tw1 (k)
∂qw(t,k)

∂k pc(k)dF (t) and corresponds to the negative price effect of the endogenous regime.

It comes from the fact that we base our rationing cost on the quantity demanded by consumers,
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qw1 (t, k), before sustaining the cost of being rationed. This integral minus the expression above

equals the second line of ϕbo
1 (k).

Figure 5: Change in surplus without (left panel) and with inefficient rationing (right panel) under
the endogenous regime.

We illustrate the variation of the rationing costs due to the variation of the investment level k with

k > k′ in Figure 5. The first panel shows the delta between the rationing costs for the exogenous

case. The initial rationing cost is the integral (up to qw0 ) below J0(k) while the new cost is the

integral below J0(k
′). Therefore, the delta is the hatched area. Note the proportionality of the

rationing cost via the downward rotation of the inverse demand function p(q, t). The second panel

represents the endogenous case. First, note that the quantity demanded by consumers at the price

cap (i) is based on the inverse demand adjusted by the price cap p(q, t) − pc(k) and not on the

inverse demand p(q, t), (ii) decreases with the increase of the investment level, due to the increase

the capacity price. The red zone represents the first term in ∂M1(k)
∂k and corresponds to the change

in the proportional ratio
qw1 (t,k)−k
qw1 (t,k) . This is a similar effect represented in the hatched area of the
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first panel. The green zone represents the change in the rationing cost due to the indirect effect

of the capacity price on the demand function. It is the second part of the derivative ∂M1(k)
∂k . By

increasing the price, the capacity market decreases the demand and the rationing cost size. Finally,

the sum of the blue and green zones represents the decrease in consumer surplus (without capacity

cost) due to the decreases in the quantity demanded at the price cap (in the Appendix, we show

that
∂qw1 (t,k)

∂k ≤ 0). The assumption concerning the form of the rationing costs leads to a net total

effect that is always positive (red zone - blue zone), as illustrated in the second line of ϕbo
1 (k).

The following Lemma describes a sufficient condition for the existence of an endogenous regime

equilibrium. That is, the expected social welfare is concave 33.

Lemma 6. If the following condition holds − ∂

∂k

[∫ +∞

tw1 (k)

kF (t)

]
≥
∫ +∞

tw1 (k)

F (t) Then a maximum

of the expected social welfare W bo
1 (k) exists.

The condition supposes that the conditional expectation decreases sufficiently fast. When the level

of capacity increases, it decreases the occurrence of states of the world when the price cap binds.

It states this marginal decrease of occurrence at the capacity level (−kf(tw1 (k))
∂tw1 (k)

∂l ) should be

higher than the marginal expected gain of capacity during those states of the world (
∫ +∞
tw1 (k)

1dF (t))

by a factor of two. From an economic perspective, it ensures that when expanding the capacity

level, the gains from reducing the inefficient rationing cost do not increase with the capacity level.

4.2 Exogenous vs. Endogenous regime with inefficient rationing

The main difference between the two regimes is that the capacity price indirectly affects qw, which

now depends on the level of investment. This has significant implications for the comparative

statistics between the two regimes. We start by expressing the difference in terms of welfare

∆W bo
1 (k) = W bo

1 (k)−W bo
0 (k) :

33Holmberg and Ritz (2020), while not providing a specific form of M(k), assume a convex rationing cost, which
is a sufficient condition for the concavity of expected welfare. In our specification, this is not the case.
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∆W bo
1 (k) =−

∫ t0(k)

0

∫ q1(t,k)

q0(t)

(p(q, t)− c)dqdF (t)−
∫ t1(k)

t0(k)

∫ k

q0(t)

(p(q, t)− c)dqdF (t)

−
∫ tw1 (k)

tw0 (k)

∫ qw0 (t)

k

(p(q, t)− pw)dqdF (t)−
∫ +∞

tw1 (k)

∫ qw0 (t)

qw1 (t,k)

(p(q, t)− pw)dqdF (t)︸ ︷︷ ︸
∆ in welfare due to price effect

+

∫ tw1 (k)

tw0 (k)

J0(t, k)dF (t)︸ ︷︷ ︸
Avoided rationing cost

+

∫ +∞

tw1 (k)

J0(t, k)− J1(t, k)dF (t)︸ ︷︷ ︸
∆ in rationing cost

The first and second lines represent the endogenous regime’s negative effect presented in section

3. However, the rationing cost specification is based on the quantity consumed at the price cap.

Hence, with rationing, the endogenous regime also indirectly affects periods during which the price

cap binds (second line) and not only on periods off-peak periods (first line). In the third line,

the first term stands for the lower occurrence of periods during which the price cap is binding

due to the lower demand. In that case, welfare trades a rationing cost against a lower welfare

corresponding to the first term in the second line. The second term represents the change in

rationing cost due to a change in the quantity consumed at the price cap. We express this term

∆J(t, k) = J0(t, k)− J1(t, k) below after rearrangement :

∆J(t, k) = k

(
1

qw1 (t, k)
− 1

qw0 (t)

)∫ qw1 (t,k)

0

(p(q, t)− pw)dq +
k − qw0 (t)

qw0 (t)

∫ qw0 (t)

qw1 (t,k)

(p(q, t)− pw)dq

We have ∆J(t, k) > 0 from the observations that qw1 (t, k) < qw0 (t) due to the negative price effect

on the quantity of the endogenous regime. Therefore, for similar states, the rationing cost is always

lower under the endogenous regime than in the exogenous case. However, it does not render the

comparative statics of the equilibrium straightforward, especially when describing (i) the ranking

between the equilibrium investment level and (ii) the ranking between the equilibrium welfare.

We start with the ranking between the different investment levels. Section 3 showed that we

always have a lower investment level under endogenous regime k∗1 ≥ k∗0 compared to the (first-

35



best) exogenous regime under a sole price cap inefficiency. With inefficient rationing, Lemma 5

showed that the investment level is higher than the first best: k∗0 ≤ kbo0 . However, due to the

opposite effects an endogenous regime exhibits between the negative price effect and the decrease

of rationing costs, the ranking between kbo1 and the first-best k∗0 is a priori unclear. Proposition 3

provides a ranking between the investment level under the linear assumptions.

Proposition 3. Under the model specifications, there is a unique ranking between the investment

equilibrium such that: k∗1 ≤ k∗0 ≤ kbo1 ≤ kbo0

Proof. See Appendix

Previous analysis shows that introducing rationing costs increases the investment level, and having

an endogenous regime (excluding rationing) decreases it. Hence, the ranking between kbo0 and kbo1

is straightforward, as the indirect effect reduces the rationing costs, hence the need for investment.

The rest of the proof analyzes how the investment level under the endogenous regime kbo1 behaves

compared to the first-best level k∗0 . The core of the proof relies on the variation of kbo1 with

respect to pw which is given by the implicit function theorem:
∂kbo

1 (pw)
∂pw = −∂2W bo

1

∂k2 /
∂2W bo

1

∂k∂pw . On the

other hand, the first-best k∗0 does not depend on pw, which allows focusing only on
∂k∗

1 (p
w)

∂pw for

the ranking. We previously proved that the expected social welfare is concave, which ensures that

∂2W bo
1

∂k2 ≤ 0. The cross derivative
∂2W bo

1

∂k∂pw is not necessary everywhere negative, so we need additional

analysis. When the parameters are such that the price cap binds for some states of the world, there

exists an upper bound pw+ and a lower bound pw− such that the price cap never binds or always

binds in expectations. When the price cap never binds in expectation, pw = pw+, the equilibrium

of the different regimes and the different inefficiencies are equal k∗1(p
w+) = k∗0(p

w+) = kbo1 (pw+) =

kbo0 (pw+), and the equilibrium capacity price is null. Moreover, at the limit of this upper bound,

we find that the cross derivative is negative :

∂2W bo
1

∂k∂pw
|pw=pw+ = −f(tw1 (k))

(
1− ∂qw1 (t

w
1 , k)

∂k

)
∂tw1 (k)

∂pw
1

k

∫ k

0

(p(q, tw1 )− p(k, tw1 )dq ≤ 0
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As more capacity increases prices and decreases demand:
∂qw1 (t,k)

∂k ≤ 0, and a higher price cap

has a positive net effect on the threshold
∂tw1 (k)
∂pw =

(
1 + ∂pc(k)

∂pw

)
1

f(tw1 (k)) ≥ 0. The expression

captures that even at the limit pw+, the marginal effect from reducing rationing cost already

dominates the welfare decrease due to the negative price effect. We find similar results for the

lower bound
∂2W bo

1

∂k∂pw |pw=pw− ≤ 0. An analysis of the behavior of the cross derivative confirms that

it is always decreasing between the two thresholds. Hence
∂kbo

1 (pw)
∂pw ≤ 0 for any pw ∈ [pw−, pw+]

and kbo1 (pw+) = k∗0 , which proves the uniform ranking.

We conclude the comparison by studying the ranking between the welfare at the different in-

vestment equilibria. Similarly, we have proven that the exogenous regime provides the high-

est welfare with only a price cap inefficiency and that inefficient rationing decreases welfare:

W0(k
∗
0) ≥ W bo

0 (kbo0 ) and W1(k
∗
1) ≥ W bo

1 (kbo1 ). We are left to study the difference between the ex-

ogenous and endogenous regimes at the equilibrium level, that is, W bo
0 (kbo0 ) and W bo

1 (kbo1 ). While

not a priori straightforward, we find that there is also a unique ranking between the expected

welfare at the equilibrium, which is described in Proposition 4.

Proposition 4. Under the model specifications, there is a unique ranking between the welfare

equilibrium such that: W0(k
bo
0 ) ≤ W1(k

bo
1 ) ≤ W1(k

∗
1) ≤ W0(k

∗
0)

Proof. See Appendix

The proof focuses on the comparison between W bo
0 (kbo0 ) and W bo

1 (kbo1 ) and relies on three obser-

vations : (i), from Proposition 3, for a given pw, we have kbo1 ≤ kbo0 ; (ii) the two functions are

increasing in pw, and (iii) ∆W bo
1 is decreasing and concave in pw. We next discuss the intuitions

behind the results.

Figure 6 illustrates the results. The solid black line gives the first-best welfare function, cor-

responding to the exogenous equilibrium with only a price cap inefficiency. The black diamond

represents the first-best investment level k∗0 . Involuntary rationing is added to represent the public-

good nature of the investments. The blue curves represent the new expected social welfare with

inefficient rationing under an exogenous regime. The red dashed curve encompasses the effects
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Figure 6: Expected social welfare given different capacity market designs

of the endogenous regime with inefficient rationing. 34 We then vary the price cap level, with a

higher value for solid curves compared to the dashed curves. The equilibrium values, which are

also the maximum expected welfare reachable within the two market designs, are represented by

black squares and circles for the endogenous and exogenous regimes. We also represented the path

for each equilibrium for continuous values of the price cap with the dotted line. As expected,

following the results in the different Propositions, for a given price cap, the level of investment is

always lower under an endogenous regime. The values of the expected welfare at the black squares

are always higher than those at the black circles. Hence, within our framework, the endogenous

regime always provides higher welfare than the exogenous regime under inefficient rationing.

34Note the convergence for the different curves to the right. Above a specific value of k, the price cap never binds
in expectation, and inefficient rationing ceases to exist. It only remains the negative price effect of the endogenous
regime for the blue curves.
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The rationale behind the results lies in two distinct causes : (1) the change of welfare due to the

indirect effect as described in ∆W bo
1 (k), for a given investment level, it reduces rationing costs, and

leads to negative price effect. (2) the change of investment equilibrium, with previous Proposition 3

stating that kbo1 ≤ kbo0 . The change in investment level between the two market designs can then be

decomposed into two components : (i) the relative comparison between the negative price effect and

the reduced rationing costs, and (ii) the relative investment costs between the two market design

equilibria. For the second component, the effect is always positive for the endogenous regime, as a

lower investment level always implies lower investment costs. The dominance ranking between the

opposite effects is ambiguous for the first component. The endogenous reduced rationing costs for

a given equilibrium investment level do not always overcome the negative price effect it generates.

We even find that having a lower investment level can penalize the endogenous regime regarding

the net effect. However, as shown in Proposition 4, saving due to lower investment costs always

implies higher welfare under the endogenous regime at the equilibrium.

Figure 7 illustrates the interaction between those opposite effects. The dashed curves represent

them under a unique investment level (as described by ∆wbo
1 (k)), which is arbitrarily taken equal to

the equilibrium under the exogenous market design kbo0 . As expected, the difference in investment

costs (black curves) is null. For low values of the price cap, the reduced rationing costs dominate

the negative price effect. As the price cap increases, there is a switch, and the negative price

effect dominates. We then show the actual comparison between the two regimes at their respective

equilibrium with the solid curves. In that case, the gain in avoided rationing costs decreases,

and the negative price effect increases. However, the lower investment level saves investment

costs, represented by the solid black curves. In that case, the sum of the black and blue curves

always dominates the red curve, which implies higher welfare under the endogenous regime at the

equilibrium.

We end this analysis by focusing on comparing the first-best solution under the exogenous regime

and the first-best under the endogenous regime in terms of expected social welfare. While there

can be a clear-cut answer on the ranking between the first best in terms of investment level, this

does not transfer in a similar fashion in terms of expected social welfare. In other words, we state
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Figure 7: Decomposition of the change in welfare at the equilibrium between endogenous and
exogenous market design with inefficient rationing

that the endogenous regime can potentially generate additional benefits compared to the exogenous

case. When the regulator implements such a regime for the capacity market and adapts its new

investment objective, then at the new investment level, the expected social welfare could be higher

than what would have been reachable under the exogenous regime. The comparison between the

expected social welfare and its net effect depends (i) on the total investment cost, (ii) on the size of

the negative effect previously described of the capacity price ∆W1(k, p
c), (iii) the gain/loss in terms

of avoided rationing cost ∆M1(k). The first effect is always positive in favor of the endogenous

regime when the result of the Proposition 4 holds, that is, k∗1 ≤ k∗0 . The second effect is always

negative as shown with the Proposition 2. Finally, the third effect can be ambiguous, as shown

in the following analysis. To illustrate the conditions under which one effect dominates the other,

we develop the model under a new specification based on a discrete distribution. Note that all the

previous results holds under this new specification.
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The technical implementation and how the different first-best investment levels are found for the

exogenous and endogenous regimes are detailed in the Appendix. The central result is that it exists

for specific values of the price cap pw and probability value θ in some cases where the expected

social welfare at the first-best investment under the endogenous regime level is either higher or

lower than the exogenous regime. Therefore, the endogenous regime is not always beneficial when

considering inefficient rationing. We formally describe the existence of the negative effect in the

endogenous regime in the following proposition.

Proposition 5. There can exist some functions pw1 (θ) and pw2 (θ) such that ∀θ ∈ [pw1 (θ), p
w
2 (θ)] we

have W bo
1 (k∗1) ≤ W bo

0 (k∗0). Outside the boundaries we always have W bo
1 (k∗1) ≥ W bo

0 (k∗0).

The proof of such negative effect cases is based on the type of first-best emerging in the model

for the exogenous and endogenous cases for given values of {θ, pw}. For sufficient low value of the

investment cost r ≤ r̃ and of the price cap pw ≤ p̃w, there exist three different first-best for the

exogenous regime : k∗0 = {qw0 , k
∗,1
0 , k∗,20 }, and three for the endogenous regime k∗1 = {qw1 , k∗1 , q1}.

The conditions on r are sufficient so that we always have only six distinct comparison cases:

{qw0 , qw1 },{k
∗,1
0 , qw1 },{k

∗,1
0 , k∗1},{k

∗,2
0 , k∗1},{k

∗,2
0 , q1}. We find that for the first two cases, the expected

social welfare at first best is always superior under the endogenous case. For the other case, the

conditions for having a negative difference in a specific comparison case can be contained within

the conditions of existence of the comparison case.

A deeper study of the different components of the difference between the expected social welfare

shows that the window during which the negative difference occurs is mainly due to the fact that the

absolute M(k) can be decreasing with respect to the probability value θ. Therefore, the function

pw1 (θ) denotes the limit at which the gains in terms of avoided welfare loss under the exogenous

regime are higher than the gains of investment cost and rationing cost under the endogenous regime

(at {k∗,10 , qw1 }). Finally, for the last comparison case, the avoided welfare loss decreases with respect

to θ, which is one of the reasons why for θ above pw2 (θ), the net effect becomes positive again. Note

that the positive difference is only due to the avoid investment cost in the last comparison case (at

{k∗,20 , q1}), the expected rationing cost being lower under the exogenous case. We show in Figure
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Figure 8: Sign of the delta between expected social welfare at the first-best investment level

8 the relation between the sign of the difference and the two parameters pw and θ, as well as the

boundaries for the first-best (in black dashed lines) and the boundaries for the sign change. The

upper and lower limits on pw originate from the initial assumptions to ensure an equilibrium.
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Figure 9: Losses and gains from the exogenous and endogenous regime for a given price cap pw

and different values of θ

5 Capacity demand allocation design

We now extend the previous model to analyze allocations. Under those regimes, the quantity

allocated to the retailers (or directly to the consumers) becomes dependent of the demand’s cur-

rent realization. While this issue is not significantly relevant in a context where the inadequacy

between capacity installed and the demand level is solely manageable through the supply side, we

demonstrate in this section that indirect incentives created by considering the realized demand in

the market design can provide additional benefits to the system. This is particularly true with

the presence of inefficient rationing. We apply the initial model to two settings : (i) when the

allocation depends on the realized market share of retailers playing ’A la Cournot ’ (ii) when the

capacity market is fully decentralized where retailers by themselves the capacity.

5.1 Retailers Market share allocation

Under this market design, the capacity allocation depends on the retailers’ realized quantity sold to

the final consumers. To represent retailers’ market share, we assume in this section that they play
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à la Cournot. This allows us to indirectly shed light on the effect of imperfect competition in the

retail market, which is an overlooked subject in the literature, both in terms of investment decisions

in capacity and in the design of capacity market. We underline that having different degrees of

competition in the retail market has a direct effect on the capacity cost allocation sustained by

final consumers. Still, it also indirectly impacts the efficiency of the system in a somewhat different

way than imperfect competition on the supply side.35

5.1.1 Market equilibrium with Cournot and without a capacity market

We start the analysis by studying the impact of having retailers playing à la Cournot in the retail

market without any capacity market. The technical details and equations are described in the

Appendix section for clarity. We do not include a price cap in this first analysis as it would not

change the results. We denote mp(q) the markup associated with the market power in the retail

market such that mp(q) = − q
npq(q)

36. Similarly to the other cases, we denote k∗0,n the investment

level that maximize the expected social welfare W0,n(k) under imperfect competition such that

k∗0,n = {k : ϕ0,n(k) = r}, with :

ϕ0,n(k) =

∫ +∞

t0,n(k)

(p(k, t)− c)dF (t)

With t0,n(k) the threshold value such that this is the first state of the world for which the wholesale

price adjusted by retailers’ market power equals the marginal cost: t0,n = {t : p(k, t) −mp(k) =

c}. The initial general assumptions ensure that the expected social welfare is concave under the

Cournot competition. The market equilibrium, such as the expected marginal revenue, equals the

marginal cost of providing an additional investment: kn0 = {k : ϕn
0 (k) = r} with :37

ϕn
0 (k) =

∫ +∞

t0,n(k)

(p(k, t)−mp(k)− c)dF (t)

35See, for instance, (Léautier, 2016) or Zöttl (2011) for an analysis of market power on the supply side.
36Note that mp(q) > 0 as pq(q) < 0, we simplify

∂mp(q)
∂q

= mpq(q) and
∂mp(q)

∂n
= mpn(q).

37Recall that under perfect competition, the relation between the wholesale price and retail price is given by
ps(q, t) = p(q, t) + q

n
pq(q)
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The following Lemma sums up the results: we find that market power in the retail market lowers

the investment level beyond the market power’s direct effect. The market investment level is

different from the optimal investment level even when maximizing the welfare function given the

market power in the retail market.38

Lemma 7. For every n ∈ [2,∞[, imperfect competition in the retail market leads (i) to a lower

first best capacity level compared with the optimal investment level k∗0 ≥ k∗0,n (ii) to a lower market

equilibrium in terms of investment level k∗0,n ≥ kn0 . The optimal capacity payment zn is equal to

the expected markup of retailers in the retail market during peak periods:

zn(k) =

∫ +∞

t0,n(k)

mp(k)dF (t) (10)

Proof. See Appendix

With imperfect competition, the first best investment level is lower due to a shift in the occurrence

of on-peak periods. It can be showed by comparing the expression ϕ0(k) and ϕ0,n(k) due to the

presence of the threshold value t0,n(k). Similarly, the inefficient market equilibrium is also lower

due both to the threshold and to a lower expected price p(q, t)−mp(q) as shown in the expression

of ϕn
0 (k).

We illustrate this result with the numerical illustration used in example 1. In figure 10, we compute

the expected social welfare for different values of capacity, and we show the cumulative effect of

imperfect competition in the system. The black curve represents the case with perfectly competitive

retailers. The black point 1 is the first best investment level k∗0 that maximizes this surplus. We

use a price cap to represent the first inefficiency that implies a low market equilibrium represented

by the black square 3. The results in Lemma 7 demonstrates that with imperfect competition in

the retail market : (i) the expected social welfare is lower, which is represented by the red curves

and implies a lower first-best investment level at the red point 2, (ii) the market equilibrium is also

38This result has important regulatory implications. Indeed, we state that the welfare-maximizing investment
level, given the imperfect competition in the retail market, is different from the welfare-maximizing investment level
in a perfectly competitive market. Therefore, reaching a competitive investment level could cause significant harm,
potentially greater than the welfare loss generated by the inefficient market equilibrium.

45



Figure 10: Expected social welfare, first-best and market investment level with and without im-
perfect competition in the retail market and with a price cap in the wholesale market

lower compared to the initial case with only a price cap. The red square 4 encompasses the two

inefficiencies and is significantly different from the initial market equilibrium.39

5.1.2 Market equilibrium with Cournot and with a capacity market

We now introduce the capacity market by describing the new market design regime as follows.

Assumption 4. A single entity builds a demand function in the capacity market and buys a level

of capacity k for a price pc(k) given the supply function described in 3. Then it allocates the full

cost kpc(k) directly to the retailers. The share of the capacity cost is based on their realized market

share in the retail market. For a retailer i this share is defined as qi
qi+q−i

with qi its quantity sold

on the retail market and q−i the quantity sold by its competitors.

39The value kn0 is found by estimating the expected marginal revenue of producers ϕw
0,n(k), which is lowered both

by the price cap and retailers’ market power.
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The first implication of ex-post allocation concerns the last stage, which is when the retail market

clears. We rewrite the retailers’ profit function by including an endogenous ratio in the retailer

profit function, as shown in the following equation.

πr
i (qi, k) = qi(p(q)− ps)− pc(k)k

qi
qi + q−i

Contrary to the previous section, we do not need to assume any tariff hypothesis for the capacity

cost allocation as it directly affects retailers’ profit at the margin. We focus our analysis on

symmetric equilibrium. We drop the notation with t as the state of the world is known at this

stage. With q−i =
∑n

j ̸=i qj . We find the best-response function of a retailer i with the first-order

conditions :

BRi(qj) = max
qi

πr
i (qi, k) ⇐⇒ p(q) + qipq(q)− ps − pc(k)k

qj
(qi + qj)2

= 0

The main results for the existence of equilibrium are stated in the following Lemma:

Lemma 8. At the symmetric equilibrium, retailers’s profit function is concave if the capacity cost

is not too important, that is if the following condition holds :

q2
(
n+ 1

n− 1
pq(q) +

q

n− 1
pqq(q)

)
> pck

The quantities are strategic substitutes whenever the following condition holds :

kpc(k)

(
n− 2

n

)
1

q2
≥ pq(q) +

q

n
pqq(q)

Proof. See Appendix

Note that when n = 2, the equilibrium is always unique and stable. This observation comes from

the classical decreasing marginal returns of the Cournot literature Vives (1999). When n > 2,

the lemma states that the capacity market allocation design induces a stricter condition on the
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marginal returns, which needs to consider the additional cost in the retailer’s profit. Using the

first-order conditions and the symmetry between the retailers, the Cournot equilibrium in the retail

markets allows to define the endogenous retailer demand function in the wholesale market:

pn(q) = p(q)−mp(q)− pc(k)k
1

q

n− 1

n

The concavity condition stated in Lemma 8 is the same as assuming that the demand function

in the wholesale market is decreasing. The equilibrium in this market design is similar to the

endogenous regime in the previous section due to the effect of the capacity price on the final demand.

Therefore, we can again define the new periodic thresholds between on-peak/off-peak/binding

price cap periods. We denote them tn(k) and twn (k) such that the expected value of pn(q) is

equal to respectively the marginal cost and the price cap, that is tn(k) = {t : pn(q, t) = c} and

twn (k) = {t : pn(q, t) = pw}. We denote the corresponding quantity qn(t) and qwn (t) such that

qn(t) = {q : pn(q, t) = c} and qwn (t) = {q : pn(q, t) = pw}.

The indirect effect of this market design on the system can be shown in the following expression

of the supply function in the capacity market:40

pc(k) = r −

(∫ twn (k)

tn(k)

(p(k)−mp(k)− c− pc(k)
n− 1

n
)dF (t) +

∫ +∞

twn (k)

(pw − c)dF (t)

)

It is composed of the marginal opportunity cost of providing an additional capacity to the system.

Hence, the marginal cost of installing a capacity r and the expected marginal rent received during

on-peak periods are defined in the parenthesis. This second expression shows that when the

capacity price does not bind, the producers receive a lower share of the demand function of the

final consumers due to the effect of retailers’ market power and the depressing effect of the market

design. The endogeneity created by the market design can be found in the fact that the expression

pc(k) appears in both terms via the demand function in the wholesale market and via the threshold

40For clarity, we do not expose the full effects of this market design on the expected social welfare nor on the first-
best solution. Indeed, it has consequences similar to the endogenous design; therefore, it implies a depreciation of
the demand for the final good. It changes the expected surplus during off-peak states of the world and the occurrence
between offpeak / on-peak periods, and the first-best investment level is lower than an allocation without indirect
effect. The full technical details are exposed in the Appendix.
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value tn(k) and twn (k). Note the difference with the requirement in the first part of the integrals,

where the capacity cost adders are dependent on n. Another difference lies in the results of Lemma

8. Indeed, it states that the demand function on the wholesale market is not fully defined for every

pair of capacity price/investment level. This is particularly true for high capacity prices and high

investment levels in conjunction with lower demand for the final good. In this case, the capacity

cost is too high, implying an absence of trade in the wholesale market. It has some implications

for the estimation of optimal outcomes as for high investment levels, the expected social welfare

function is not always concave, as opposed to the previous analysis. 41

The following Proposition summarizes the main effect of an ex-post allocation based on the realized

market share. Allocating the capacity market cost based on retailers’ realized market share provides

an intermediate indirect effect between an exogenous regime price and an endogenous regime. We

extend the previous section to take into account imperfect competition. We denote k∗1,n the first-

best under an endogenous design with imperfect competition similarly. That is, the capacity price

is allocated on a variable basis directly to the final consumers. In that case the marginal expected

social welfare such as k∗1,n = {k : ϕ1,n(k) = r} is given by

ϕ1,n(k) =

∫ t1,n(k)

0

∂q1,n(t)

∂k
pc(k)dF (t) +

∫ +∞

t1,n(k)

(p(k, t)− c)dF (t)

As with k∗0,n, we simply extend the previous analysis to take into account imperfect competition.

Proposition 6. (i) The new first-best solution in terms of investment level under the market share

allocation regime exists if the following condition holds ∂pc(k)
∂k (pqq(k)−mpqq(k)) ≥ ∂2pc(k)

∂k2 (pq(k)−

mpq(k)).

(ii) If it exists it solves k∗n = {k : ϕn(k) = r}, with ϕn(k) defined as follow

41One way to see it is by defining a state of the world as the threshold between the case where the maxi-
mum price on the wholesale market is null at the quantity exchanged during off-peak periods. Namely we de-
fine the threshold t−n (k) such as the concavity condition in Lemma 8 is strictly null, that is :t−n (k) = {t :

qn(t)2
(

n+1
n−1

pq(qn(t)) +
qn(t)
n−1

pqq(qn(t))
)
− pck = 0}. Whenever this threshold exists, then the expected social

welfare is defined as follow:
∫ tn

t−n (k)

∫ qn(t)
0 (p(q, t) − c)dqdF (t). At the second derivative of the welfare function, the

threshold value plays a role and can lead to the non-concavity of the expected welfare.
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ϕn(k) =

∫ tn(k)

0

∂qn(t)

∂k
pc(k)

n− 1

n
dF (t) +

∫ ∞

tn(k)

(p(k, t)− c)dF (t) (11)

(iii) The first-best investment level is lower than the first-best under exogenous design and higher

than the first-best under the endogenous regime (k∗1,n ≤ k∗n < k∗0,n). Moreover, the reverse is true

for the expected social welfare at the first-best investment level; the welfare is higher under an

exogenous regime but lower under an endogenous regime compared to the market share allocation.

Proof. See Appendix

The capacity cost adder when n = 2 is equal to half of the cost adder of equation 7 increases with n.

When n → +∞, the capacity cost is entirely allocated to the consumer, mimicking the exogenous

equilibrium. This Proposition states that increasing competition in the retail market increases

the burden of consumers’ capacity prices. Hence, the negative effect observed in the regime with

endogenous capacity prices is now shared between retailers and consumers. By extension, we have

the same results for the endogenous regime when we take into account inefficient rationing with the

ex-post market share allocation. Namely, the depressing effect shown in Proposition 6 will both

lower the expected surplus and the expected rationing cost, hence having an ambiguous effect on

the optimal outcome.

We illustrate our results using the numerical example described in 1. In figure 11, we show

the expected social welfare under various assumptions. The black curve represents welfare when

there is no capacity market (or an exogenous capacity market), and the retail market is perfectly

competitive. Then, the blue solid curve stands for the new welfare function when we assume

the retailers are playing a la Cournot. Note that the optimal payment defined in equation 10 in

Lemma 7 is not the payment necessary to reach point 2 to point 1. Instead, the optimal payment

is necessary to reach the market equilibrium represented by the dashed vertical line and point 2. In

other words, increasing the level of investment does not change the level of competition in the retail

market and does not allow an increase in the expected social welfare beyond the blue curve. In the

same figure 11, we also illustrate the results of Proposition 6. The dashed blue curve represents

the expected social welfare given the effect of the capacity market design based on realized market
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Figure 11: Expected social welfare under the market share allocation (n = 5)

share. Similar to the endogenous case, it depreciates the social, such as an increase in the level

of investment, increasing the difference between the two welfare. The new first-best investment

level noted by point 3 is now lower than the first-best of the initial stat note by point 2. However,

compared to the endogenous case of the previous section, the figure shows that this first-best level

is always higher than the previous one noted by point 4, both in terms of investment level and in

terms of expected social welfare.

5.1.3 Extension - capacity market, inefficient rationing, and retail market structure

We now extend our analysis to the relation between the degree of competition in the retail market

and the outcomes of the paper. In this extension and using our analytical framework, we show

that a change in market structure can have ambiguous effects both in the capacity market outcome

and with respect to the determination of the optimal capacity level. This aspect of essential goods

has been relatively less studied than the supply side. Therefore, in this extension, we describe the

effect of different market structures on the optimal and market investment level with and without

inefficient rationing.
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The first level of the analysis is to consider the initial framework without a capacity market and

with only missing money inefficiency caused by a price cap. In this case, Lemma 7 states that

an increase in the number of retailers always increases both the investment and expected welfare

at the first-best level. This result is in agreement with the literature on market power. In this

section, we focus both on the change in optimal investment level and on expected social welfare at

the same optimal investment level. The derivative of the expected social welfare in this case can

be written as follows:

∂W0,n(k)

∂n
=

∫ tn(k)

0

∂q0,n(t)

∂n
mp(q0,n)dF (t)

With
∂q0,n(t)

∂n =
mpn(q0,n)

pq(q0,n)−mpq(q0,n)
. The derivative is positive as the markup decreases with n but

increases with q. It proves that
∂W0,n(k)

∂n > 0. The implementation of a capacity market under

an exogenous regime does not modify the result. Increasing the number of retailers lowers the

market up they impose in the retail market, which increases the demand in the wholesale market.

Ultimately, this lowers the cost of providing additional capacity. The effect on the capacity price is

ambiguous, as lower market power increases the optimal quantity of investment but lowers the cost

of procurement. We turn now to the analysis of the effect of the market structure on the model

when there is inefficient rationing. Under this assumption, we find that an increase in competition

in the retail market can have an ambiguous effect on the expected social welfare at the optimum.

To see this, we express the derivative of the social welfare with respect to n :

∂W bo
0,n(k)

∂n
=

∂W0,n(k)

∂n
− ∂M0,n(k)

∂n
=

∂W0,n(k)

∂n
−
∫ +∞

tw0,n(k)

∂J(∆0,nk)

∂n
+

J(∆0,nk)

∂∆0,nk

∂∆0,nk

∂n
dF (t)

With M0,n(k), the cost of inefficient rationing when there is imperfect competition in the retail

market but no indirect effect of the capacity market. The net marginal effect on the expected social

welfare depends on the representation of the cost of inefficient rationing. Intuitively, an increase in

competition increases the demand for the good. Hence, we should expect a higher ∆k for a given

level of investment k. Therefore, the second derivative in the rationing cost part is positive. The
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direct effect of n on J(.) is less clear. Let’s assume that the cost of inefficient rationing is based on

the surplus of the consumers at the investment level k as in our model specification in example ??.

In that case, it is independent of n, and the derivative is null. We show this effect in the following

equation with the model specification :

∂W bo
0,n(k)

∂n
=

∫ tn(k)

0

∂q0,n(t)

∂n
mp(q0,n)dF (t)−

∫ +∞

tw0,n(k)

∂qw0,n(t)

∂n

1

k

∫ k

0

p(q, t)− pwdqdF (t)

With
∂qw0,n(t)

∂n =
mpn(q

w
0,n)

pq(qw0,n)−mpq(qw0,n)
, which is also positive. On the other hand, we could have assumed

a cost based on the consumer surplus at the quantity exchanged at the price cap, namely qw0,n(k).

But in this case, an increase of n also increases this value via the increase in demand. Hence, the

first derivative is also positive. In both cases, the second part of the equation is always negative,

counterbalancing the positive effect of
∂W0,n(k)

∂n . This has important policy implications, as we

have shown that a lower degree of competition does not always translate into a higher expected

social welfare when there is inefficient rationing.

At first sight, a similar observation could have been made when we consider either an endogenous

market design or a market share allocation for a capacity market. In that case, an increase in the

number of retailers has two effects of opposite sign : (i) an increase in social welfare, which is the

common effect of higher competition in a canonical model à la Cournot highlighted in the previous

equation (ii) a decrease in the social welfare due to the lowering of the consumption associated

with a higher capacity cost allocated to the consumers. We provide the marginal value of expected

social welfare in the following equation.

∂Wn(k)

∂n
=

∫ tn(k)

0

∂qn(t)

∂n

(
mp(qn) + pc(k)

k

qwn (t)

n− 1

n

)
dF (t)
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As in the previous equation, the expressions in the brackets are positive. The difference between the

no capacity market (or exogenous) regime compared to the realized market share (or endogenous)

lies in the value of ∂qn(t)
∂n , which is shown in the following equation.

∂qn,1(t)

∂n
=

(
mpn(qn)− pc(k) 1

n2
k

qn(t)

)
+ n−1

n
∂pc(k)
∂n

k
qn(t)

pq(qn,1)−mpq(qn,1)− pc(k)
qn(t)2

n−1
n

The denominator of the derivative is always negative, so its sign is always determined by the

net effect at the numerator. As previously stated, an increase in n lowers the cost of providing an

additional capacity and increases the optimal investment level that should be bought in the capacity

market. It creates the potential ambiguity in the value of ∂pc(k)
∂n . However, at the optimal level,

the envelop theorem ensures that only the direct effect of n on the supply curve in the capacity

market should be considered, therefore excluding the indirect effect on the optimal investment

level. Therefore : ∂pc(k)
∂n < 0. All in all, we have

∂qn,1(t)
∂n > 0 and ∂Wn(k)

∂n > 0. The results of this

extension are summarized in the following proposition.

Proposition 7. For every capacity market regime without inefficient rationing, the expected social

welfare at the first-best investment level is increasing with n.

However, when including inefficient rationing, for every capacity market regime, the increase of

competition always increases the optimal investment level, but it has an ambiguous effect on the

expected optimal social welfare. When the marginal gain of expected surplus during off-peak

periods is higher than the marginal loss of inefficient rationing, then the expected social welfare

increases.

We illustrate those results using the model specification of example 1. Figure 12 shows how the

degree of competition in the retail market, the market design, and the assumption with respect to

the inefficiencies can significantly impact the expected social welfare at the first-best investment

level. While the latter is always increasing in n, this is not always the case for welfare. As expected,

in the canonical market design with no inefficient rationing (black solid curve), the welfare strictly

increases in n. When we implement the endogenous regime - or the market share allocation
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Figure 12: Expected social welfare at the first-best investment level for different levels of compe-
tition in the retail market and for different market designs

(blue solid curve), the welfare is still increasing, as the negative effect of more investments is not

considered at the optimal level. The central result lies in the case when inefficient rationing is

represented. In the first market design (dashed black curve), the expected social welfare at first

best is a concave function, implying that an additional retailer provides more harm than benefits to

the system above a certain degree of competition in the retail market. In other words, the marginal

cost associated with higher demand and a higher cost of inefficient rationing is greater than the

gain in lower market power. Finally, the figure shows another benefit of either an endogenous

market design or a market share allocation with inefficient rationing (dashed blue curve). Indeed,

the expected social welfare becomes an increasing function. It means that the depreciating effect

of the capacity price on the demand is not symmetric between the marginal gain and loss of an

increase of n. To say it differently, it lowers more the loss associated with the increase of the

rationing cost than it decreases the expected surplus during off-peak periods, as shown in the

previous section.
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5.2 Retailers individual allocation

This last section provides the first analysis of a fully decentralized capacity market. This market

design regime takes the furthest step towards accounting for the final electricity demand in the

capacity market allocation. Each retailer must purchase their capacities in the capacity market.

An entity only monitors ex-post the level of capacities and compares it to each retailer’s sales.

A penalty mechanism is implemented if there is any difference between the two quantities. We

formally describe this market design regime as follows:

Assumption 5. A regulated entity mandates the retailers to buy the capacity on the capacity

market given their realized sales in the retail market for a price pc(k) given the supply function

described in 3. For each retailer, if their individual realized sale quantity on the retail market qi is

above their individual purchase quantity on the capacity market ki, the regulated entity imposes

a unitary penalty S, such that the penalty mechanism total cost for a retailer is S(qi − ki).

One of the critical features of this regime concerns the case when a retailer is in negative deviation,

i.e., has sold more on the retail market than he has bought capacity in the capacity market. In

this case, he suffers a penalty, which results in a payment from the retailer to the regulated entity

by a unitary amount of S, with S ≥ 0 being an administratively fixed value.42

We process as follows to describe the implication of this market design regime: (i) We analyze

the case when the penalty value is null, allowing us to define retailers’ fundamental behavior in

the capacity market. We show that it significantly depends on the existence of a price cap in

the wholesale market and on the level of imperfect competition in the retail market. We develop

our results on the idea that retailers act similarly as producers when given the opportunity to

participate in the decentralized capacity market. With imperfect competition and a price cap,

their expected profit in the retail market depends on the level of capacity. It means that we can

also define an expected unitary rent, similarly to the producers’ rent ϕ(k). Moreover, the existence

of a capacity market implies that they can also choose to invest, with the capacity price acting

as an investment cost. (ii) Then, we introduce the effect of the penalty on retailers’ behavior,

42Some remuneration mechanisms can exist so as to reward retailers who have provided additional capacity, but
as we focus on symmetric equilibrium, they do not play a role in the outcome.
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punishing retailers for having too little capacity. We compare the market equilibrium between the

two previous cases and with the other market designs. (iii) Finally, we analyze the implications in

terms of expected social welfare and the first best investment level of the decentralized capacity

market. This is particularly relevant in inefficient rationing that creates an additional cost for

social welfare due to insufficient capacity. We first provide a definition and a comparison of the

first best investment level implied by a decentralized capacity market, and then we analyze the

market equilibrium. Note that while the outcome relies on a decentralized supply and demand

side, the existence of the penalty mechanism acts as a tool for the regulated entity to incentivize

to a particular market equilibrium.

5.2.1 Equilibrium in a decentralized capacity market without a penalty mechanism

A fully decentralized capacity market gives retailers an opportunity to choose the level of in-

vestment. Therefore, we show that the existence of a decentralized capacity market can provide

additional investments even though there is no penalty system implemented. To do so, notice the

similarity between producers and retailers, in the sense that at the margin, retailers can have a

positive value for increasing the level of investment. We provide in the following equation the sum

of expected profit for n retailers when there is imperfect competition in the retail market and when

there is a price cap in the wholesale market:43

Πw
d (k) =

∫ t0,n(k)

0

q0,n(t)mp(q)dF (t) +

∫ tw0,n(k)

t0,n(k)

kmp(k)dF (t) +

∫ ∞

tw0,n(k)

k(p(k, t)− pw)dF (t)

The expected profit is composed of the markup differential between wholesale and retailer prices

whenever the price cap does not bind and the expected price differential between the price cap and

43For clarity, we assume imperfect competition in the retail in this section. The initial threshold values in this
case are similar to the exogenous case, our without capacity market, but we adjust by adding a n to the subscript
0. The extension to the perfectly competitive case is straightforward. For instance, when there is no price cap, the
third part of the equation is null.
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the retail price when the price cap binds.44 The marginal value for retailers of a marginal increase

of capacity is given in the following equation.

∂Πw
d (k)

∂k
=

∫ tw0,n(k)

t0,n(k)

(mp(k)− kmpq(k)) +

∫ ∞

tw0,n(k)

(p(k, t)− pw − kpq(k)) (12)

Increasing the level of investment has two effects: (i) It increases the markup during on-peak periods

whenever the price cap is not binding. (ii) Retailers can sell an additional unit at a marginal cost

equal to the price cap and at the expense of a decrease of the price on the inframarginal quantity

whenever the price cap binds. The marginal increase of k does not impact the off-peak periods as

the markup is independent of the level of investment. And the marginal effect at the thresholds

(t0,n(k) and tw0,n(k)) cancels out. The equilibrium in the decentralized market is found by equating

the supply function defined in 3 with the expected marginal value of an additional investment k

defined, for instance, in 12 with a price cap. Therefore, similarly to the supply side, we assume

that this value acts as a proxy for the demand function in the decentralized capacity market.

Leaving aside the coordination issues between retailers, the two following Lemma summarize the

implications of a decentralized market without any penalty system with and without a price cap

in the wholesale market. The efficiency of a decentralized capacity market in terms of investment

level can be assessed by comparing the value that satisfies the equality with the ones described

in the previous sections, such as the optimal condition in equation 1 or the market equilibrium

condition in equation 2.

Without a penalty mechanism and without a price cap :

Proposition 8. (i) The market equilibrium in terms of investment level kd0 is given by the following

equality kd0 = {k : ϕd
0(k) = r} such that

44Therefore, we assume that there is no price cap in the retail market. This is a strong assumption, especially
since price caps do not necessarily appear explicitly in retail markets. For instance, retailers can be under a form
of regulated tariffs that allow some extra profits, or they can have part of their sales covered by forward contracts.
However, if a price cap is also implemented in the retail market, it is sufficient to have a positive delta to maintain
this effect.
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ϕd
0(k) =

∫ ∞

t0,n(k)

(p(k, t) + kmpq(k)− c)dF (t)

(ii) In this case, the installed capacity kd0 , is always above the first-best investment level that

maximizes the expected social welfare kd0 ≥ k∗0 .

The Lemma stems from the fact that the marginal value for retailers of an additional capacity is

always positive whenever there is no price cap in the wholesale market. Therefore, when facing a

decentralized capacity market and the supply function described as in the equation 3, there is a

tradeoff between gaining a marginal increase in the expected profit and sustaining an additional cost

due to the capacity prices. The inequality kd0 ≥ k∗0 follows from the observation that ϕd
0(k) ≥ ϕ0(k).

If there is a price cap in the wholesale market, Lemma defines the new equilibrium as well as their

ranking.

Proposition 9. (i) There can be two investment equilibriums, where :

(i.a) The first equilibrium kd1 is given by the following equality kd1 = {k : ϕd
1(k) = r}, with such

that :

ϕd
1(k) =

∫ tw0,n(k)

t0,n(k)

(p(k, t) + kmpq(k)− c)dF (t) +

∫ ∞

tw0,n(k)

(
pw − c+mp(k) + k

∂mp(k)

∂k

)
dF (t)

(i.b) The second equilibrium installed kd2 , if not constrained by kw0,n, is given by the following

equality kd2 = {k : ϕd
2(k) = r}, with

ϕd
2(k) =

∫ tw0,n(k)

t0,n(k)

(p(k, t)− kmpq(k)− c)dF (t) +

∫ ∞

tw0,n(k)

(p(k, t) + kpq(k)− c)dF (t)

(ii) (ii.a) If the price cap is sufficiently binding then the two market equilibrium are an upper and

lower boundary of the initial first-best, that is respectively: kd1 ≥ k∗0,n ≥ kd2 (ii.b) If kd1 ≥ k22 holds
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then kd1 ≥ k∗0,n ≥ kd2 also holds. (ii.c) Increasing the degree of competition in the retail market

makes the first equilibrium less attractive than the second equilibrium.

The second Lemma is due to the structure of the expected profit whenever there is a price cap in the

wholesale market. The threshold effects of the capacity constraint imply that the expected profit

can have two local maxima. Whenever the investment level is sufficiently low such that off-peak

periods merely exists (t0,n(k) almost null), the expected social welfare is a well-defined concave

function, which gives the second equilibrium. However, as soon as the investment level starts

increasing, the second part of equation 12 is negative and outweighs the first part. It means that

when the price cap binds the marginal loss associated with the marginal cost pw and the decrease

in the inframarginal revenue kp(k) is higher than the price gain p(k, t) and the markup gains when

the price cap does not bind (first part of the equation). It implies that the profit function becomes

convex. For high investment value, the price cap never binds, which implies an expected profit for

retailers as in the no price cap case45. Hence, for those investment values, the expected profit is an

increasing function of k, which gives the first equilibrium. The existence constraint on the second

equilibrium by the initial market equilibrium without a capacity market kw0,n is straightforward.

While retailers might not want this level of investment in the case that kw0,n ≥ kd2 , they cannot

force producers to invest less than what they would have done without a capacity market. To say

it differently, whenever the inequality holds, this means that the second market equilibrium implies

a fully inefficient capacity market with a null capacity price and an unchanged level of investment.

The second observation shows that there can be a clear ranking between the equilibrium such that

equilibrium is always above the equilibrium, and the initial first-best investment level is comprised

between the two (i.e. ϕd
1(k) ≥ ϕ0,n(k) ≥ ϕd

2(k)). The condition on pw for having kd1 ≥ k∗0 ≥ kd2

has an interesting economics interpretation. When studying the equilibrium condition for k∗0 and

kd1 , we find that the marginal expected revenue for retailers during on-peak periods when the price

cap does not bind (first part of ϕ1(k)) is always superior to the marginal expected value of social

welfare during the same period (the value of ϕ0,n(k) for every t ∈ [t0,n(k), t
w
0,n(k)] ). On the other

hand, the marginal expected revenue for retailers during on-peak periods when the price cap binds

45The difference between ϕd
0(k) and ϕd

1(k) lies in the value of the supply function that takes into account the price
cap.
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is either superior or inferior to the social welfare value. depending on the value of pw. When the

price cap is sufficiently binding, the first effect always dominates the second effect, which implies

that kd1 ≥ k0,n. Similar opposite effects can be found when comparing k∗0 and kd2 . Finally, the last

observation comes from the fact that whenever the marginal expected revenue for retailers during

on-peak periods when the price cap binds is higher for ϕd
1(k) than for ϕd

2(k) (i.e. the second part

of their expression), then we always have a marginal expected revenue for retailers during on-peak

periods when the price cap binds higher than the marginal expected value of social welfare during

the same period. To illustrate the ranking, our model specification provides a clear-cut answer for

the threshold value of pw: whenever the price cap is lower than the lowest possible wholesale price

at the initial first-best investment level k∗0,n such that pw = lim
t→∞

p(k∗0,n, t) − mp(k
∗
0,n), then the

ranking holds. Note that this is a tighter condition than the initial assumption on pw defined in the

original model. Finally, the result with respect to an increase in the number of retailers highlights

the relation with the choice of equilibrium even though we do not model coordination. Our result

originates from two observations : (i) expected retailers’ profit is lower when there is an increase

of n for a high level of investment k, and (ii) the second equilibrium decreases less with respect to

n compared to the first equilibrium. The economic intuition behind these results is that the first

equilibrium and the expected profit with a high level of investment rely mostly on the expected

markup. Hence, an increase of n necessarily lowers its profitability. On the other hand, the second

equilibrium, and the expected profit with a low level of investment, relies relatively more on the

price differential between the retail price p(k, t) and the marginal cost equal to the price cap pw,

both being independent of n.

We illustrate this result using our model specification. We show in figure 13 the relation between

the expected retailers’ profit, the investment level, the presence of a price cap in the wholesale

market, and imperfect competition in the retail market. When there is no price cap (solid lines),

the profit function is strictly increasing with k, with a convergence toward a plateau starting at

the right square corresponding to profit-maximizing investment level 46. Given the investment

value for retailers and the presence of a capacity market. The intersection between the supply

and demand functions in the retail market leads to the right diamonds, the first equilibrium.

46Beyond this investment value there is only off-periods which lead to expected profit independent of k
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Figure 13: Expected retailers profit with respect to the investment level, the presence of a price
cap in the wholesale market, and imperfect competition

This level is similar to assuming that retailers are investing into capacity, such as the marginal

revenue is given by equation 12 and the marginal investment cost is given by the supply function

of producers in the retail market given by equation 3. As expected, an increase in the degree of

competition leads to a decrease in the expected profit, as shown by the difference between the

black and blue lines. On the other hand, when introducing a binding price cap, we observe a

significant modification of the expected profit function. For a low value of k the profit is concave,

and the profit-maximizing level is given by the left squares. An intermediate increase of k leads

to a drop in the profit function. Then, the expected profit converges toward the no-price case, as

the price case does not bind anymore. While the investment level that maximizes retailers’ profit

function can be significantly lower than in the no-price cap case, it does not necessarily imply

that it is the investment level installed by the producers. It is straightforward to assume that if

facing a lower demand of capacity compared to their initial market equilibrium without a capacity

market, producers are still going to invest in their market equilibrium level. In this case, the

capacity market does not provide any additional capacity. Those investment levels are given by

the left diamonds and correspond to the first equilibrium. Finally, the figure shows the ambiguity
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of implementing a decentralized capacity market. For a low value of n, the expected profit at the

second equilibrium is higher than the expected profit at the first equilibrium. On the other hand,

for a higher value of n, we observe a significant decrease in profitability at the second equilibrium,

which creates the risk of not resolving the inefficient level of investment.

5.2.2 Equilibrium in a decentralized capacity market with a penalty mechanism

We have now introduced the penalty in the design of the decentralized capacity market. This

penalty is meant to punish retailers for selling too many quantities with respect to the level of

investment they help provide via the capacity market. While having little interest in the initial

case with a price cap (and imperfect competition) generating solely missing money for producers,

the penalty takes on its full meaning when we assume inefficient rationing. Indeed, in this case, the

additional cost sustained by consumers is due to the inadequacy between the quantity consumed

(and hence sold) to consumers and the level of investment. Therefore, the penalty acts as a mean

to make partly responsible retailers for this loss.

In terms of market design, the previous observation translates into the fact that the penalty

is sustained only when the price cap is binding, that is, only when inefficient rationing occurs.

First, let denote an additional threshold value twd (k) such that this is the first state of the world

when the price cap is binding after accounting for the depressing effect of the penalty twd (k) =

{t : pn(k, t) − S = pw}.47 We also denote qwd (t) the corresponding quantity, which can also be

interpreted as the Cournot equilibrium in the retail given retailers’ profit function and penalty

mechanism. With this new value, we can distinguish three cases depending on the value of the

installed capacity.

• (Case 1) When k > qw0,n(k), the price cap is never binding, and the effect of a capacity market

on the expected retailers’ profit is strictly identical to a regime without a capacity market.

• (Case 2) For a value of k between qwd (k) and qw0,n(k), we observe a paradoxical outcome.

Rationing should have occurred as soon as k is below qw0,n(k) without a penalty. It implies

47The penalty does impact retailers at the margin as the mechanism is based on the difference between the realized
quantity, retailers’ strategic variable, and the investment level.
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Figure 14: Quantity exchanged on the retail market before rationing

that retailers sustain the penalty, which is then passed to consumers as a marginal cost, which

lowers their demand. However, rationing does not occur, which contradicts the demand’s

decrease due to the penalty. Therefore, retailers follow the level of investment. To do so,

they increase the price of their consumers by a unitary amount of T (k) ≤ S so that at any

state of the world between tw0,n(k) and twd (k), the demand is equal to the capacity k,48 that

is we have ps(q)− T (k) = pw.

• (Case 3) k is below qwd (k), it is now optimal for the retailers to keep their strategy at qwd (k)

before rationing as it is the profit-maximizing quantity given the penalty mechanism.

We illustrate those three cases in the following figures. We show how the quantity sold by retailers

to final consumers depends on the state of the world before rationing, given the price in the

wholesale market and for a level of investment k. The left figure compares the case with an

exogenous requirement design (or with no capacity market) and the decentralized capacity market.

In Case (1), the decentralized capacity market does not impact retailers. Therefore, the quantity

exchanged during off-peak periods at the marginal cost (q0,n(t)) and the investment level during

on-peak periods (k) when the price cap is not binding is the same. When the price cap starts

48We could also assume the reverse mechanism where retailers pay consumers T (k) to reduce the demand in order
to avoid the penalty.
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binding, retailers should sustain the penalty. However, the mismatch between the incentives in

case (2) leads retailers to sell the same quantity as the investment level. On the other hand,

without this penalty, retailers should be selling the quantity at the price cap (qw0,n(t)). When this

quantity is too important with respect to the penalty, retailers stop lowering their consumption

and start offering at the level that maximizes their profit given the penalty mechanism (qwd (t)).

However, due to the negative effect of the penalty, this quantity is still lower than the initial

one (qw0,n(t)). The right figure compares the decentralized design with the endogenous case. It

illustrates the difference in terms of each design’s indirect effect on the system. During off-peak

periods, the need for the endogenous market design to allocate the capacity price onto the demand

implies a depreciation effect of the quantity exchanged at the price cap (q1,n(t) instead of q0,n(t)).

In turn, this increases the duration of off-peak periods. Such an indirect effect does not exist in

the decentralized capacity market, as the penalty mechanism is applied only when the price cap

starts binding. When both designs are in the on-peak periods, and the price cap is not binding,

the effect of the price allocation is the same as prices are formed by the demand function. Finally,

we illustrate the case when the penalty value is not equal to the capacity price in the endogenous

regime. The depressing effect on the quantity exchanged at the price cap (qwd (t) and qw0,n(t)) differs.

In the figure, model parameters lead to a higher capacity price compared to the penalty. Which

implies that qw1,n(t) > qwd (t).

Given the three different cases, the expected profit function of a retailer i becomes:

Πs
d(k) =

∫ t0,n(k)

0

q0,n(k)mp(q(t))dF (t) +

∫ tw0,n(k)

t0,n(k)

+kmp(k)dF (t) Case (1)

+

∫ twd (k)

tw0,n(k)

k(p(k, t)− pw − T (k, t))dF (t) Case (2)

+

∫ +∞

twd (k)

k(p(k, t)− pw)dF (t)−
∫ +∞

twd (k)

S(qwd − k)dF (t) Case (3)

−pc(k)ki
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It comprises three main parts related to different values of k given a demand level (or a different

level of demand given a value of k). The two first terms are the same with and without a capacity

market, as the price cap is not binding. The retail price rises while the wholesale price is fixed and

equal to the price cap for the second term. Between the two states of the world, tw0,n(k) and twd (k),

the demand decreases due to the retailers’ actions to avoid paying the penalty. It is materialized

by the transfer T (k, t)49. When it is not profitable to reduce the demand given the penalty (when

twd (k) is reached), then the new demand is given by qwd (k), the retailer profit is in the fourth

term, and the retailers pay the penalty in the fifth term. The last term is the capacity cost due

to the retailer’s obligation to buy their capacities. Given this expected profit, we can define the

marginal value of a capacity for the retailer, which serves as the retailer’s willingness to pay for

an additional capacity. Under the market design, the retailers aggregated demand function in the

capacity market is equal to the marginal value of an additional capacity for their profit function.

Hence, we provide the derivative of retailers’ expected profit with respect to k in the following

equation.

∂Πs
d(k)

∂k
=

∫ tw0,n(k)

t0,n(k)

mp(k)− kmpq(k))dF (t) +

∫ ∞

tw0,n(k)

(p(k, t)− pw − kp(k))dF (t)

(
∂Πw

d (k)

∂k

)

+

∫ twd (k)

tw0,n(k)

([mp(k) + kmpq(k)]− [p(k, t) + pq(k)− pw]) dF (t)

−kSf(twd )
∂twd (k)

∂k
(µ(s))

+

∫ ∞

twd (k)

SdF (t)

We note µ(S) the marginal effect induced by the penalty mechanism, including the three last lines.

With a penalty, we find first a similar effect of k on the expected profit, which is captured by the

first term. The second term represents the effect induced by the penalty during the case (2). When

retailers lower their sales by an amount T (k), they essentially get the same expected profit as when

49Note that if we assume that retailers pay the consumers to reduce their consumption, only the sign changes
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the price cap is not binding, which is represented by a gain both in terms of additional unitary

mark-up at the investment level (mp(k)) and by a higher mark-up due as it is similar as an increase

of demand (kmpq(k)). On the other hand, compared to the initial case without a penalty, they

loose the expected marginal profit when the price cap was binding (p(k, t) + pq(k)− pw). The last

terms both relate to the penalty mechanism. The first one comes from the different structure of

the revenue when the price cap is binding or not; the probability of being reached changes with k.

When k increases, the states of the world when the price case binds are less likely, which is captured

by −∂twd (k)
∂k . Moreover, recall the definition of twd (k) = {t : pn(k, t)− S = pw}, which is also equal

to twd (k) = {t : p(k, t) −mp(k) − S − pw = 0}, hence we have the following relation between the

expected total revenue between tw0,n(k) and twd (k) : kmp(k) − k(p(k, t) − pw) = kS. This value is

then expressed in terms of the probability of reaching the threshold twd (k), hence f(twd ). Finally,

the last term corresponds to the expected unitary penalty sustained during rationing. A marginal

increase of k lowers the occurrence of rationing, directly lowering the penalty mechanism’s expected

cost.

The equilibrium in the capacity market with a penalty mechanism is described in the following

Lemma. It is compared to the previous equilibrium without the penalty, and we assess the relative

profitability of each possible equilibrium.

Lemma 9. (i) The penalty mechanism described in assumption 5 induces two possible market

equilibriums in terms of investment level:

(a) the first one is the same as with the price cap case and without a penalty: kd1 ,

(b) the second one is the investment level such that max(kw0,n, k
d
3). With k3d given by the following

equality k3d = {k : ϕd
3(k) = r}, with

ϕd
3(k) =

[∫ tw0,n(k)

t0,n(k)

(p(k, t)− kmpq(k)− c)dF (t) +

∫ ∞

tw0,n(k)

(p(k, t) + kp(k)− c)dF (t)

]
+ µ(S) = r
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(ii) Moreover, (i) if µ(S) > 0 (resp. µ(S) < 0) then kd4 ≤ kd2 (resp. kd4 ≥ kd2). (iii) kd0 is now

relatively more profitable than kd4 compared to kd2 .

The first equilibrium has the same interpretation as in the previous lemmas. When the capacity

level is sufficiently high, the price cap never binds, and the incentives induced by the penalty

mechanism are null. The marginal value of an additional capacity is the same as in the case of a

capacity market without a penalty mechanism and without a price cap in the wholesale market.

The second equilibrium encompasses the penalty effect compared to the value kd2 . To see that the

first and second terms of the equality in the brackets are equal, the left-hand side of the equation

defines kd2 : ϕ
d
2(k). When solving for the equilibrium, we find that the rest of the equality condition

is equal to the marginal effect of the penalty mechanism on the expected total profit.50 Therefore,

at the equilibrium, the difference between the two investment levels is given by the net sign of

the three last parts. If the net effect of the penalty mechanism is positive, then we have kd1 ≤ kd2 .

Otherwise, if it is negative, then kd2 ≤ kd1 .

The first implication of Lemma 9 is that the penalty mechanism has an ambiguous effect on one

of the equilibriums. As previously explained, during the case (2), retailers’ behavior implies a

change in the marginal profit received on the retail market by switching expected profits of on-

peak periods when the price cap is binding to expected profits when the price cap is not binding.

If the expected profit in the first case is significantly higher than in the second case, it is, therefore,

more profitable for retailers to reduce the level of investment. In other words, the marginal cost

induced by the penalty of not having enough investment is overshadowed by the loss of expected

profit when the price cap is binding. On the other hand, despite not analyzing the coordination

issue related to the existence of the two equilibriums, we find that the penalty mechanism always

reduces the profitability of the lower equilibrium kd4 . In the case the first equilibrium kd0 is more

efficient, it can significantly improve the benefit of a capacity market.

50This is followed by construction, as the demand function in the capacity market is equal to the derivative of the
total expected profit.
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5.2.3 Social welfare under uncertain decentralized capacity market

We turn now to the study of the implications of a decentralized capacity market from a social welfare

aspect, which needs to be compared to the first-best investment level given by the previous market

design regimes, namely the exogenous/endogenous regime and the market share allocation. For

clarity, we only analyze the case when we take into account inefficient rationing, as the decentralized

capacity market with a penalty mechanism is usually explicitly implemented to account for this

inefficiency.

The efficiency of a decentralized relies on two channels: (i) the market equilibrium it provides to

the system and (ii) the indirect effect it has on the expected social welfare. The first channel has

been partly addressed in the previous analysis, where we characterized the market equilibrium.

The second channel starts by defining the new expected welfare function under a decentralized

market design and with inefficient rationing.

W bo
d (k) =

∫ t0,n(k)

0

∫ q0,n(t)

0

(p(q, t)− c)dqdF (t)+∫ ∞

t0,n(k)

∫ k

0

(p(k, t)− c)dqdF (t)− rk −
∫ +∞

twd (k)

J(∆dk)dF (t)

The expression can be rewritten as :

W bo
d (k) = W0,n(k)− rk −

∫ +∞

twd (k)

J(∆dk)dF (t)

Recall that W0,n(k) is the expected social welfare under the exogenous market design (or without

capacity) market. With perfect competition, this value is equal to W0(k). Therefore, the incentives

provided by a decentralized capacity market can be fully, and is only, captured through a change in
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the cost of inefficient rationing51. To see this, we use the model specification provided in example

??, and we define the cost as follows:

Md(k) =

∫ +∞

twd (k)

qwd (t)− k

k

∫ k

0

(p(q, t)− pw)dqdF (t)

The main changes with the previous designs are found in the new threshold values: twd (k) and qwd (t).

As previously explained, the incentives created by the penalty mechanism induce retailers to lower

their sales in any state of the world between tw0,n(k) and twd (k) (case(2)), such that the quantity sold

is strictly equal to installed capacity. Therefore, no inefficient rationing was implemented during

those periods. We summarize in the following proposition the policy implications of a decentralized

capacity market with inefficient rationing and in terms of the first-best investment level. We note

k∗d this first-best value such that k∗d = {k : ϕd(k) = r}, with

ϕd(k) = ϕ0,n −
∫ +∞

twd (k)

∂J(∆k)

∂k
|∆k=∆dk +

J(∆dk)

∂∆dk

∂∆dk

∂k

Proposition 10. (i) A decentralized capacity market always provides higher welfare than under

an exogenous market design (W bo
d (k) ≥ W bo

0,n(k)), and the new optimal investment is always lower:

k∗d ≤ kbo0,n. Moreover, k∗d and W bo
d (k) are converging respectively towards k∗0,n and W0(k) as the

penalty value S increases.

(ii) (a) A decentralized capacity market always provides higher welfare than under an endogenous

market design (W bo
d (k) ≥ W1,n(k)) if the following inequality holds.

∆W bo
1,n(k) ≥ ∆Md(k)

With ∆W bo
1,n(k) and ∆Md(k) = M0,1(k)−Md(k)

51A practical implementation issue arising with a decentralized capacity market is how to consider the revenue
from the penalty mechanism. On an aggregate level, this should not matter as long as its allocation does not
marginally alter the expected surplus. This can be done by assuming a fourth agent in the expected welfare, the
government, or by assuming that the penalty revenue is allocated on a lump sum basis to consumers, for instance.
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(b) It is sufficient for M1,n(k) ≥ Md(k) to hold so that ∆W bo
1,n(k) ≥ ∆Md(k) always holds. More-

over, an increase in the penalty value S increases the efficiency of the decentralized capacity market

first-best compared to the endogenous market design.

The first statement (i) implies that the decentralized capacity market and for any investment

level k (including the first-best investment level) always has a positive benefit in terms of welfare

compared to the exogenous market design. Moreover, the increase of the penalty value also always

has a positive effect on the expected social welfare, as the only indirect effect it causes is to reduce

the inefficient rationing cost. That is, we always have ∂Md(k)
∂k ≤ 0. For sufficiently high penalties,

the incentive is such that rationing cost never occurs at the first-best level, hence mimicking a

system without inefficient rationing. The second statement (ii) has a natural interpretation: if

the gains in terms of lower costs due to the penalty incentives are higher than the net gain of the

endogenous regime (comprised of the demand depreciating effect, the decentralized design does

not have, and the lower rationing cost), then the decentralized market also provides more expected

welfare. Finally, when the rationing cost is lower in the decentralized case than the exogenous

one, the efficiency of the former is higher than the efficiency of the latter. Moreover, suppose an

increase in the penalty lowers the cost of inefficient rationing. In that case, it reduces the value of

∆Md(k) (if it is negative) and can even change its sign so that the decentralized capacity market

is always more efficient. In other terms, the second efficiency channel of the decentralized capacity

market implies a strictly increasing relation between the expected social welfare and the penalty

value. Following those results, we turn now to the relation between the market equilibrium given

by the decentralized capacity market.

From an efficiency perspective, it is sufficient to note that a decentralized capacity market is

more efficient if the expected social welfare is higher under one of its market equilibrium, not

only at its first-best investment.52 That is, we have either, for instance, W bo
d (kd1) ≥ W bo

1,n(k
∗
1,n)

or W bo
d (kd2) ≥ W bo

1,n(k
∗
1,n) so that the decentralized regime is more efficient than a endogenous

regime. Unfortunately, the general framework prevents from having a clear-cut answer to when

52The coordination between the two possible equilibriums is therefore crucial but left to future works, as one
equilibrium can make the decentralized capacity market better or worse than another market design

71



the decentralized capacity is more efficient53. The conditions defined in Proposition 10 for the first

best investment level still give the main economic intuitions that can be applied to the relative

efficiency of the market equilibrium: if at the decentralized market equilibrium, the reduction in

the rationing cost is higher than the net gain of the endogenous market design at the first best

investment level then the decentralized capacity market is more efficient. Meanwhile, at the end of

this paper, we provide some comparative statistics to analyze the relation between the efficiency

of a capacity market and the penalty mechanism that acts as a regulatory tool to manage this

efficiency.

Lemma 10. (i) The market equilibrium kd1 is independent of the penalty, and the market equi-

librium kd2 is a concave function with respect to the penalty.

(ii) The efficiency of a decentralized capacity market : (a) at the market equilibrium kd1 is strictly

increasing with the penalty value. (b) at the market equilibrium kd2 is strictly increasing with the

penalty value if the following inequality holds under the model specification.

1− F (twd (k
d
2)) ≥ 2Sf(twd )

∂twd (k
d
2)

∂S

This equilibrium emerges because the price cap never binds at this level, meaning there is no

expected penalty cost. However, the strict increasing relation between the expected social welfare

under the decentralized capacity market regime and the penalty value implies that an increase in

the penalty always increases the expected social welfare at the market equilibrium. On the other

hand, the equilibrium kd2 is concave with respect to the penalty value. This has strong policy

implications. For a given set of initial parameters, a maximum constrained expected social welfare

can be achieved through the decentralized capacity market. To say it differently, lets denote Sd

the penalty threshold such that Sd = {S : 1− F (twd (k
d
2)) = 2Sf(twd )

∂twd (kd
2 )

∂S }. For any value of the

penalty S ∈ [0, Sd], the expected social welfare at the second market equilibrium increases with

S, similar to the first equilibrium. However, for any value of the penalty beyond Sd, the expected

social welfare is also increasing if and only if the net effect of the decentralized capacity market

53Even with the model specification of examples 1 and 4.1.
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is positive. This net effect is comprised of (i) a positive effect due to the increase of the expected

social welfare implied by the reduction of the rationing cost, as described in the Proposition 10; and

(ii) a negative effect due to the reduction of the quantity chosen at the second market equilibrium.

but this maximum does not necessarily ensure that it implies a more efficient decentralized capacity

market compared to other market designs.

6 Conclusion and discussion

This paper built a tractable framework to analyze multiple markets’ interdependences for an es-

sential good prone to underinvestment, such as electricity or medical supplies. We showed how

the investment decisions are affected by those markets, their structure (such as the degree of com-

petition), and, most importantly, their design. Our case study is the capacity markets that were

implemented to encourage producers to invest by providing additional remuneration. Most of the

literature on capacity markets has focused on the supply side, where producers offer their availabil-

ity on future transaction periods on the wholesale market. Therefore, the demand side has been

overlooked, even though some system efficiency effects are well known. Current implementations

show many options regarding the demand side’s design on capacity markets, as consumers do not

have proper incentives to buy capacities. Using our framework, we compare multiple market de-

signs and their implications. The first set of regimes is based on differentiating the capacity cost

allocation. The second set of regimes is represented by how the design can account for current

demand realization. We underline the different parameters that can significantly affect the out-

comes of a capacity market on investment decisions. The choice of the design can significantly

affect prices and quantities in the three markets and the redistribution of welfare between agents.

One of the advantages of this framework relies on the possible extensions that we can implement

besides providing a simple but complete vision. The rest of the section discusses two issues that

could be addressed in future research using this framework.

First, we initially assumed that consumers were fully reactive to retail prices. Such assumptions do

not describe the reality yet, as illustrated in the electricity system, as most small final consumers,
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such as households, are still under fixed-price contracts. The study of final consumers’ heterogeneity

and its implications for investment decisions in the power system is an emerging trend. Léautier

(2014) and Léautier (2016) provide a relevant model close to the one presented in this paper. They

show the effects of having those two types of consumers with different investment decisions and

a capacity market. However, the author does not compare demand design options for capacity

markets and does not consider retailers. Therefore, implementing this new extension in our model

could shed light on the issue associated with power systems’ investment decisions. It could also

significantly impact retailers’ individual market design options. Indeed, let’s consider that some

consumers cannot react to price, but retailers are still forced to cover their consumption. The

demand function’s formation in the capacity market will be significantly impacted.

Finally, we assume that future consumer demand is commonly shared between agents. A single en-

tity, potentially regulated, and retailers could access a different quantity and quality of information.

For instance, we can assume that the entity only has a global vision of future demand, and hence,

it is prone to make a more significant error forecast than retailers. On the other hand, retailers

have private access to more precise information on their client portfolios while sharing common

information on the world’s future global states. Therefore, introducing these private/common ele-

ments in our model could shed new light on the effect of capacity markets and their market design

options. Finally, in some current implementations, the entity based its global forecast on retailers’

information. Consequently, the comparison between the various regimes’ cases could be analyzed

using game theory and signaling.
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