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Abstract

In many countries, capacity markets have been put in place to supplement wholesale markets
revenues to ensure an adequate generation capacity tomaintain security of supply. This paper
studies the bidding behavior in those markets and how it can be affected by different capac-
ity product designs. A capacity market allows producers to lock in revenues in advance in
exchange for their commitment to being available over a future period on wholesale markets.
Producers’ participation depends on the opportunity cost of making the investment avail-
able. When the commitment is made, the profitability of the plant is uncertain. The canonical
framework is based on a net present value model, where the capacity bid is equal to the ex-
pected loss on the energymarket. However, this does not recognizemanagerial flexibility and
assumes that the plant cannot react to future market conditions. Thus, we propose a novel ap-
proach to conceptualize capacity bids using real options theory, where the opportunity cost
is represented as an option on the spread that drives the profitability of the plant. First, we
define a bid in a one-period capacity market as a European Put Option. Then, we expand to
a multi-period setting in which capacity bids can be evaluated as a modified Basket Option.
Our model provides new insights on the interplay between the product/commitment dura-
tion and on capacity bid. Using the real options approach, the model presents a first attempt
to untangle the different drivers of the opportunity cost for providing capacity availability.
We analyze the determinants of the option value concomitantly with the length of the pro-
curement and deduce some policy implications for the product’s design. Finally, we provide
a numerical illustration of this issue using data from the French power system.
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I. INTRODUCTION

In current power systems, producers do not always receive enough revenue to cover
their production costs even though they are deemed necessary to reach the first best in-
vestment mix. Electricity prices can be constrained due to political reasons with price
caps [24] or can send distorted price signals due to technical and noneconomic inter-
ventions on the market [20]. Other reasons can be found in that electricity prices do
not consider the correct value of an additional capacity, for instance, due to the public
good nature of capacities during high demand periods [19] or because some externali-
ties are not correctly internalized [22]. At the same time, the risk of not having enough
investment poses a significant threat. Indeed, the absence of adequacy between the
capacity installed and the electricity demand, combined with the difficulty of imple-
menting efficient rationing, leads to high system costs. It has been illustrated by the
rolling blackouts in the Texas system last winter or during hot summers in California.

One solution to restore the right level of investment could be the implementation of
capacity remuneration mechanisms. They provide the producers with an additional
remuneration stream to increase and maintain the optimal level of investment. There
are currently various implementations ranging from capacity payments paid directly
to the producers to more complex designs with actual markets, where the price emerg-
ing from the confrontation between a supply and a demand for capacity makes the
additional remuneration. They are usually denominated as capacity markets. Each
participating producer makes a price-quantity offer for a capacity on the supply side of
those competition-based mechanisms. If a producer sells a capacity, he receives an ad-
ditional price, and it legally forces the investment to be available over a specific period
in the future.

In this paper, we mainly investigate two research questions (i) how to model capac-
ity bids in the context of uncertainty and managerial flexibility to operate or close the
plant (ii); how bids depend on multiple key design features. We tackle those issues
by stating that participation in a capacity market implies a specific opportunity cost
for the bidder, which is the fundamental driver for its bidding behavior. To do so, we
analyze the opportunity cost determinants associated with the decision to be available,
allowing a more detailed comparison with the marginal value of an available capac-
ity, independent of the product design. Therefore, the subsequent analysis sheds light
on effectively setting up a mechanism based on competition, where the price signal
improves economic efficiency. In this paper, the capacity price encourages producers
to invest and stay open when wholesale markets cannot send the proper price signal.
Therefore, any deviation of the price from the actual value of an additional capacity for
the system can cause an adverse effect. We stress that both market design theory and
practitioners must consider the practical limits imposed by the actors’ behavior in the
face of specific rules.

To our best knowledge, we are the first to use amethodology other than the net present
value framework to analyze the bidding behavior in a perfectly competitive capacity
market. Namely, we state that the opportunity cost of participating in a capacity mar-
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ket is equal to the option value of the availability decision. Such conceptualization
sheds new light on how prices emerge in a capacity market. There also has been no
formal analysis of the link between the bids in a capacity market and the duration of
a capacity product. Therefore, our paper deepens policy perspectives for the practical
implementation of capacity markets.

The opportunity cost of participating in the capacity market is well known in the liter-
ature, and some papers have highlighted the need to grasp the role of product design
better when assessing the efficiency of those mechanisms. They have underlined the
necessity of understanding the opportunity cost drivers when selling an availability to
refine the study of capacity prices and help choose the right product design. In this
paper, we underline the multidimensional aspect of this issue with two rationales: (i)
the interdependence between the wholesale market and the capacity market (ii) the
managerial flexibility the investment encompasses.

We start ourmodel by recalling the fundamentals behind a single power system invest-
ment decision from a private producer perspective. Then we introduce a simplified
capacity market where the representative producer can bid in an auction mechanism a
capacity product that forces the investment to be open during a specific period deter-
mined before the auction is set.

First, we use a net present approach where the producer only offers the expected op-
portunity cost associated with the capacity product. In this case, he bids the expected
revenues over the procurement duration net of the fixed cost associated with the deci-
sion to stay available. We show that a longer product always implies a lower or equal
bid than the sum of expected bids for shorter products. In both cases, the bids are al-
ways equal to the expected loss. Otherwise, the producer makes a null bid. This first
approach implies for the producer a comparison between only two alternatives (i) being
available during the whole procurement period or (ii) closing during the same periods.

Our main contribution lies in studying the bid as an option value associated with the
possibility to close temporarily but irreversibly to avoid fixed costs. First, we use the
standard option pricing theory to value a simplified version of a capacitymarket where
the period during which is the plant has to be available, called the transaction phase,
covers only a single wholesale market clearing. Under this case, the capacity product
is equivalent to a European Put Option where the exercising date is the transaction
phase, the underlying being the wholesale profit, and the strike price is the fixed cost
associated with the decision to stay open. Under the real options framework, the bid
on the capacity market is strictly equal to the option value. Then, we expand this anal-
ysis to a multiperiod transaction phase, and we treat the capacity product as a form of
Basket Option where the asset price portfolio is the expected revenue generated over
the procurement period. It allows us to compare this option value with the sum of
the option value for shorter products. Using the real options framework to assess the
bidding behavior in a capacity market, we find that it significantly differs from the net
present value framework. First, bids are always higher under the real options frame-
work, meaning that producers place a positive value on the possibility to close to avoid
some costs. Second, the drivers behind the bids have different effects on their value
compared to the net present value framework. We provide comparative statistics on
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the bids value and the difference between the two frameworks. We find that the length
of the transaction phase constantly increases the bidwhen using the real options theory
while having an ambiguous effect on the net present value bid. The volatility on the
wholesale market and the policy instrument, the waiting time between the sale of the
capacity product, are also analyzed. They both have ambiguous effects on the capacity
bids depending on a set of conditions on the bid drivers. Finally, we find the reverse
effect for the product design dimension with a higher bid with a longer transaction
phase than the sum of expected bids with shorter products.

We test our results by calibrating the model to the French electricity system. We use
realized data for a CCGT (gas) power plant to simulate a bid in the capacity market
and compare the outcomes with realized prices observed on the French capacity mar-
ket. While the results are highly sensitives to the assumptions regarding the drivers of
the bids, we find that the real options framework can explain auction outcomes. Our
model also stresses that a change of volatility for the investment revenue, due, for in-
stance, to the increasing share of renewables, can significantly affect the bidding behav-
ior in a capacity market. Similarly, choosing the duration between the auction date and
the transaction phase when designing the capacity market has important implications
when looking for the least cost design.

Using both the theoretical framework and the numerical illustration, we provide a pol-
icy discussion for the design of capacity markets. Namely, using a real options frame-
work sheds light on the role of penalty in the capacity market imposed onto producers
who choose not to be available during the procurement duration despite having sold
a capacity product. Similarly, the cost associated with the decision to close can also be
included in the analysis. Another crucial point can be made regarding the difference
between existing and new capacity. While for the former, the opportunity cost of being
available is only made concerning a single capacity product, for the latter, the decision
to enter is more complex. Indeed, it is based on the expected revenue made during the
investment lifetime, including future capacity prices. In this case, the effect of different
procurement duration can be significant.

II. LITERATURE REVIEW

In terms of capacity markets, a vast literature has studied their effect on investment
decisions. Such assessment has been realized in simplified models such as classical
Nash equilibriummodels [14], with sometimes a representation of strategic actors [28],
and stochastic optimization models where the market is mimicked using a minimiza-
tion cost function [13]. Other models tried to replicate the complex environment in
which those mechanisms have been implemented by representing different flux be-
tween agents and their decisions’ implications. System Dynamics models studies dy-
namically the effect of capacity markets on investment decisions [10], while Agent base
Models use a bottom-up approach to analyses the interactions of specific agents in the
power system [5]. In most papers, regardless of the types of models, they find that ca-
pacity markets significantly improve energy markets’ efficiency by increasing invest-
ment value and reducing the capacity adequacy issue.
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Taking a different angle, we base our work on single project valuation models which are
less used in this context. The advantage of this type of model relies on the possibility of
finely representing the components of investment value for a producer, their evolution,
and technological constraints. More specifically, it allows for a hypothetical investment
to represent both its future revenues and the impact of the additional remuneration on
its value dynamically. On the other hand, our model lacks a system view, with no rep-
resentation of market feedback, technology competition, and market power. Most of
the single project valuation model stream applied to power investment focused on real
options analysis to study the different value of potential managerial decisions, such
as investment in renewable energy under price uncertainty ([15], [17]), conventional
investments under policy and finance uncertainty ([23] ) or the effect of different sup-
port mechanisms for renewable on investment decision ([17]). To our knowledge, only
one paper has taken the single project valuation to capacity markets: [18] found that
exogenous capacity payments significantly modify the value of new gas power plants,
especially when the quantity of renewable is high. Therefore, we expand this approach
by endogenizing the payments while using actual data to deduce the investment value
and studying different product designs.

The fundamental driver behind bid formation in capacity markets, developed for in-
stance by [31], is that participation in such a market creates an obligation to be avail-
able in a future period on the energy market. Therefore, selling a capacity generates
an indirect cost, which could be described as an opportunity cost. The opportunity
cost of participating in a mechanism is the cost of being available during a predefined
future period, which would not have been incurred if the investment was not produc-
ing during the same period. Failures and constraints can lead to insufficiently high
prices to cover their costs, even though they are necessary for the system. That is when
the marginal production cost is lower than some willingness-to-pay of unserved con-
sumers. Consequently, forcing an actor to producewhen it is potentially at a loss entails
a positive opportunity cost but allows the energy to be efficiently dispatched.

Some papers seeking to reproduce the interdependence of the actors and the different
production decisions in powermarkets are based on this principle [2, 5, 30]. [12] shows,
for instance, how a monopoly offers on a capacity market when the latter has to give
up exporting profit in a foreign market whose price is higher than the price on the na-
tional market due to the obligation to be available. The offer on the capacity market
is made at a price equivalent to the loss of opportunity to make a profit on the foreign
market. [8] proposes the term of allocation externality to characterized the link between
capacity bids and energy profits. In his setup, incumbents are dumping capacity prices
to avoid new entry into energy markets. Because new entry is made possible with the
capacity market, the energy profit could be lower due to higher competition. There-
fore, it can be strategic to make losses on capacity markets to prevent more significant
losses in the energymarket. The few papersmodeling the reliability optionmarkets are
also enlightening about this approach.1 During periods of scarcity of demand, that is,
when the plant is needed, producers undertake to pay back on demand the difference
between the energy price received on the energy markets and the strike price of the

1Thesemechanisms, close to capacitymarkets, are based on the exchange of financial options between
the actors holding the investment and demand. Initially held by the players, these options are sold on a
market, which constitutes remuneration for their capacity.
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obligation [11]. In those models, the opportunity costs, and thus bids for these options,
are equal to the amount transferred on demand [26, 29].

In a similar approach to this paper, [4] uses the real options theory to analyze the bid-
ding behavior in a Reliability Option mechanism. They describe multiple complex
frameworks to derive the opportunity cost of participating in thosemechanisms. How-
ever, the fundamentals for the bids on those mechanisms are different from our set up2

and they do not address the product design dimension. Finally, our work is close to
the paper of [27]. They provide new insights on bidding behavior for renewable auc-
tions by also using real options. However, they again study a different framework from
ours3

In this work, simulations in the single project model allow defining opportunity costs
associated with participation in a capacity market. We represent the possibility that
the investment will not recover enough of its costs when forced to produce, which cre-
ates the implicit cost associated with the decision to close. We show that its value is
significantly impacted by the profit drivers forecast and the capacity product’s design.
Current debates on the design of capacity markets have not yet determined the opti-
mal capacity product if it exists. There is a coexistence of these products inmost current
markets, which underlines the importance ofmodeling their potential effects on invest-
ment values. Table 1 recapitulates the different variations and illustrates some example
of current capacity markets and their relative product design. Note that some markets
also include a distinction between new capacity and existing capacity. The former can
either buy the long or the short product, while the latter is usually only allowed to buy
the shorter product.

Transaction phase

Monthly Quaterly Yearly Multiyear

- - France France
CAISO - CAISO

- SPP - -
- - PJM -
- - UK UK
- - Poland Poland
- - Belgium -
- - ISO NE -

NYSO - NYSO -
- - - Ireland
- - - Italy
- - Greece -

Table 1: Product designs used in the model and actual implementations

2For instance, the strike price is explicit in reliability options mechanisms and the comparison of
different transaction phases do not entail the same implications.

3Producers bid for the price they will receive once the investment is made, without knowing their
production costs. Moreover, the option is covering a single period.
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The impact of the length of the contractual period is even less discussed formally in
the literature. [9] emphasizes the importance of carrying out such analysis to improve
the understanding of a capacity market. To our knowledge, [6] and [7] are the only
ones to have addressed this issue qualitatively and quantitatively. In [6] they under-
line the unsettled tradeoff between the financing costs and complexity costs of shorter
products, and the costs of capacity over procurement and costs of excluding flexible
generators of longer products. In [7], they investigate the implications of the length of
capacity products procured when there is seasonal variation in both the electricity load
and the electricity generation. Using a Nash-equilibrium approach with investments
and bidding behavior, they illustrate the efficiency tradeoffs associated with introduc-
ing multiple shorter capacity products instead of procuring a single annual capacity
product and derive the optimal length of a capacity product. Our model has the same
spirit, but leaving aside themarket representation, we focus on the coexistence between
engaging in the capacity market and on managerial option (closing) and adapting our
model with more detailed technological characteristics.

Similarly, [3] build a complex model using the System Dynamic approach to under-
stand how closing canmodify the implementation effect of a capacitymarket regarding
an initial sub-optimal energy-onlymarket. However, contrary to ourmodel, the author
does not expand his analysis onmultiple product designs. We also allow a high degree
of flexibility in the mothballing decision by representing different closing periods.

III. MODEL ASSUMPTIONS

3.1. Investment and wholesale market

We focus on a hypothetical setup with a single risk-neutral producer. He can invest in
a unique power plant of a specific technology used to sell electricity at a future price
on the wholesale market at date t and with a price pt. If the producer enters the mar-
ket by building his investment, he sustains an initial investment cost of cI . Every n̄om

dates he can choose to stay open during a following period of length nom, called the
closing period. If the producer decides to stay open, he sustains a fixed cost of com

called the periodic fixed cost. Those costs typically include operation andmaintenance
costs, leases, or wages. He can also produce whenever the wholesale price is above the
marginal production cost cv and sell its electricity on the wholesale market. The vari-
able costs usually include fuel cost and carbon cost. Otherwise, if the investor chooses
to close temporarily, he avoids the fixed cost but cannot produce. We normalize the
capacity level, so one unit of capacity produces one unit of electricity. It is similar to
assume an absence of economies of scale, where producers with discrete capacity value
would make piece-wise bids.

We define the inframarginal rent collected at a date t as the net wholesale revenue as
πt = (pt − cv)+. We assume it is uncertain for the investor at any date prior to t. We
model this uncertainty using a stochastic process (πt)t≥0. This stochastic process follows
aGeometric BrownianMotion such as it satisfies the stochastic differential equation [4]:
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∆π = µπtdt+ σπt∆Zt (1)

With µ and σ respectively, the drift and the volatility of the Brownian Motion and∆Zt

are the increments of a standard Brownian motion. This assumption regarding the un-
certainty of the profit drivers is commonplace in commodity markets, especially when
studying investment decisions in the electricity sector (see, for instance, [23], and [27]).
It allows capturing the randomness of the future variable cost, which follows the price
of other commodities such as oil and gas, and the intrinsic uncertainty of electricity
prices which depends, for instance, on weather conditions, demand patterns, and car-
bon prices.

We consider a risk-neutral investor, so we define a constant risk-free interest rate r
which is also used as an discount rate in our model. Therefore, the rent process is
defined by:

∆π∗ = rπ∗
t dt+ σπ∗

t∆Z∗
t (2)

We follow the canonical notation where ∆Z∗
t is the increments of the Brownian mo-

tion under the equivalent martingale measure Q. We also want to study the sum of
inframarginal rents’ distribution; we make the following assumption.

Assumption 1. The sum of inframarginal rent collected by a producer is log-normally dis-
tributed.

More precisely, if
∫ n

i=0
πt represents the sum of the stochastic process values over a pe-

riod n with µ and σ respectively, the drift and the volatility, then the sum follows a
log-normal distribution. Alternatively, this is similar to say that if

∫ n

0
πt = eX then:

X ∼ N (m, v) (3)

with m = 2 ln [M ] − 0.5 ln [V 2] and v2 = ln [V 2] − 2 ln [M ] such that M is the expected
value and V 2 the second-order moment of the sum. We use this assumption as there
is no explicit analytic expression of the distribution of the sum of Geometric Brown-
ian Motion. This analytic approximation is commonplace in finance theory and re-
lies on approximating the unknown distribution by another tractable one (see, for in-
stance, [25] and [21]). More specifically, we use a moment matching method where
the moments of the sum distribution are matched with the moment of the log-normal
distribution. In the appendix, we provide more details for these assumptions when
demonstrating the results of proposition 4. Finally, wemake the following assumption
regarding the relationship between the different closing periods.

Assumption 2. Aclosing decision for a specific period does not affect the profit or the producers’
cost for other periods.
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For instance, closing the investment does not raise the production cost over the follow-
ing periods nor decreases the revenue perceived on the wholesale market.

3.2. Producer behavior and market efficiency

Following the canonical theory for investment decisions in the electricity sector, the
sum of inframarginal rents collected during the entire lifetime T of the power plant
should be covering the initial investment cost incurred at t = 0. However, when we
take into account the periodic fixed cost, the producer enters the market only if the
following equality holds:

∫ T

0

e−rtE∗
0 [πt] dt = cI + com

n̄om−1∑
i=0

∫ nom

0

e−r(t+i×nom)dt (4)

WithE∗
0 the expectation operator at date t = 0with respect to the equivalent martingale

measure Q, T the power plant’s lifetime, n̄om the number of time the producer has to
choose to stay open and to pay the periodic fixed cost. The first left term represents the
sum of net expected revenue made on the wholesale market, the first right term is the
investment cost, and the last right term represents the actualized sum of the periodic
fixed cost. For tractability, we made com periodic occurred at each period t, but recall
that it is always sustained whenever the investment stays opened during a period of
nom. The equality in equation 4 is similar to stating that the investment NPV is at least
null. The investment NPV at time t = 0 can be defined as follow:

Π0 =

∫ T

0

e−rtE∗
0 [πt] dt− cI − com

n̄om−1∑
i=0

∫ nom

0

e−r(t+i×nom)dt (5)

Following a similar approach, the power plant chooses to be available whenever it is
profitable. The condition for an opening for each period nom is given by the following
equality:

∫ nom

0

e−rtE∗
0 [πt] dt =

∫ nom

0

e−rtcomdt (6)

For tractability, we assume that the decision is made at the beginning of a closing pe-
riod.

While the canonical theory states that a producer should be producing, and therefore
be available, each time the electricity price is above its marginal cost, the introduction
of period fixed costs can induce a risk of inefficiency on the power system. Namely,
assuming that the power plant is indeed necessary for the system, as soon as the power
plant closes because the inframarginal period collected on a specific period is below
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the corresponding fixed cost, it generates a net welfare loss for the system 4. Given the
previous assumptions on the investment, one can quickly compute the optimal number
of periods t over the lifetime during which πt ≥ 0 and compare it to the number of
periods over the lifetime during which the investment is open and πt ≥ 0. A difference
between those results would show that the power plant inefficiently behaves. Such
inefficiency could be due to a price cap on the energy market, the effect of the non-
economic intervention of the system operator, or unpriced externalities.

3.3. The capacity market

If a regulator decides that this power plant is necessary for the system, she implements
a capacity market to encourage the producer to invest and be available. To so, she
defines a capacity product with a specific duration called the transaction phase and notes
nt. She organizes the transaction of this product via a market mechanism such as an
auction at a contractualization date noted t0. Once the producer has sold the product,
he is legally bound to be available during the transaction phase, that is, to be on the
market during a transaction phase of length nt. This period starts at a predefined date
noted T̄ , with nd the distance between the auction date and the starting date of the
transaction phase. The regulator can use multiple instruments to check for availability,
such as unannounced tests or verifying book orders on the energy market. One can
note that the transaction phase is not necessarily equal to the closing period, which is
investment-specific. It can either be lower, equal, or superior. The following figure
illustrates the design of a capacity market where the transaction phase implies three
closing decisions for the investment.

t0 (nd) T̄ T̄ + nt

Contractualization

Transaction phase (nt)

Closing period (nom)

com com com

For the producer, the capacity price received in the capacity market enters its profit
as a second stream of remuneration in addition to the revenue made on the wholesale
market. Similarly to the closing periods, we define n̄t the number of times a capacity
auction is set during the investment lifetime. Using the NPV of the investment over its
lifetime, the final NPV with the capacity market is equal to:

Πcm
0 =

∫ T

0

e−rtE∗
0 [πt] dt− cI − com

n̄om−1∑
i=0

∫ nom

0

e−r(t+i×nom)dt+
n̄t∑
i=0

e−r(i×nt)pci (7)

4Our approach to the market efficiency implies that while the wholesale price is below an optimal
value that covers the fixed cost, it optimally sends short term signals. To say it differently, if thewholesale
price would have been optimal, then occurrences of prices below the marginal cost are the same as the
occurrences with the inefficient price. Our analysis could be extended to the case where prices are also
inefficient concerning the marginal cost, but it implies additional assumptions to differentiate between
periods when both optimal and inefficient prices are above the marginal cost and when they are not.
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With pc the capacity price which is received at every capacity auction. By construction,
auctions are set up at an interval of nt. As we do not model the competitive process in
the paper, we simplify the analysis by assuming that the bids the investor makes on the
capacity market are equal to the price he receives. Such assumption holds under the
case the investment is always the marginal bidder in a uniform auction, or if he bids
truthfully in a pay-as-bid type auction or in a bilateral marketplace5. We restrict the
most straightforward design in the following sections and provide more extensions in
the policy discussion section.

IV. THE NET PRESENT VALUE FRAMEWORK

We start our analysis by describing the bidding behavior of a producer who offers only
its net present opportunity cost on the capacity market associated with an existing in-
vestment. It allows to precise the definition and the bid’s rationals in a capacitymarket.
We discuss the relation between the product design and the expected inframarginal
rent net of the periodic fixed cost, which is a basis for the canonical approach to model
bids in the capacity market. Those results also serve as a reference value to compare
the bidding behavior when the option value is taken into account using a real options
framework.

4.1. The inframarginal rent and the opportunity cost

The opportunity cost associated with participation in a capacity market is based on the
dichotomybetween sunk andnon-sunk fixed costs incurredwhen the producer decides
to produce. It is crucial as some fixed costs could be considered sunk before participat-
ing in a capacity market. Indeed, recall that fixed costs are decomposed into two parts:
(i) Investment costs, which incur at the power plant’s first activation. (ii) periodic fixed
costs, which incur periodically and irrevocably. When considering entering the mar-
ket, investment and periodic fixed costs are still pending and avoidable. Consequently,
the time horizon used to compute the opportunity cost of entering the market should
be based on the entire project lifetime. Indeed, when the producer compares the deci-
sion to enter the market at date t = 0, he faces a tradeoff between (i) receiving the asset
value; and (ii) never entering the market, which translates into a null value. On the
other hand, if the producer has already invested, periodic fixed costs are the only fixed
costs avoidable, and the time horizon is limited to the closing period. Therefore, when
the producer forecasts the decision to participate in the capacity market at date t0, he
faces a tradeoff between having to open the power plant and potentially incurring net
losses; or leaving temporary the market at no cost6.

The cost associated with such an opportunity over a transaction phase is the difference
between the sumof the periodic costs linked to the decision to stay openduring the obli-
gation to produce and the profits made only during the period covered by the capacity
product. Formally we note B0 the initial bid made before the investment is made, and
bt0 the bids made at every auction date t0 during the investment lifetime. For instance,

5See for instance [27] for a discussion on the truthful behavior in competition based mechanisms for
investments in electricity production.

6We assume in the model extensions a cost associated with the possibility to close temporarily.
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assume a product with a transaction phase of nt sold at t0 with a periodic fixed cost
sustained over an identical period (nom = nt), if we assume that the producer offers its
net present opportunity cost on the capacity market, then the following equality based
on the condition 6 must hold:

∫ nt

0

e−rtE∗
0 [πt] dt+ pc =

∫ nt

0

e−rtcomdt (8)

Having assumed that producers truthfully bid then the bid value for an existing plant
on a capacity market is:

bt0 = e−rnd

[∫ nt

0

e−rtcomdt−
∫ nt

0

e−rtE∗
0 [πt] dt

]+

Under the net present value framework, the opportunity cost of participating in a ca-
pacity market is equal to the expected short-termMissing Money, that is, the expected
loss of staying available due to the existence of fixed periodic costs. Given the bids for
an existing power plant, we can now define the bid for a new investment. It is based
on the wholesale revenue but also on the expected bids on the capacity market. The
following equality based on the condition 4 must hold and implies that the investment
NPV given the capacity prices is null:

∫ T

0

e−rtE∗
0 [πt] dt+

n̄t−1∑
i=0

e−r(i×nt)bi×nt + pc = cI + com
n̄om−1∑
i=0

∫ nom

0

e−r(t+i×nom) (9)

Having assumed that producers truthfully bid, then the bid value for an existing plant
on a capacity market is:

B0 =

[
cI + com

n̄om−1∑
i=0

∫ nom

0

e−r(t+i×nom) −
∫ T

0

e−rtE∗
0 [πt] dt−

n̄t−1∑
i=0

e−r(i×nt)bi×nt

]+
(10)

With n̄t, the number of times a capacity market auction is implemented. Under the net
present value framework, the opportunity cost of participating in a capacity market is
equal to the expected long-termMissing Money, which is equal to the investment fixed
cost and the sum of the periodic fixed costs net of the revenue earned on the wholesale
and capacity market. This last point is particularly relevant as our paper aims at un-
derstanding the link between product design and capacity bids. Therefore, if the costs
and profit are held equal, a different product design should bring different long-term
Missing Money, hence different first bids. We provide a more detailed discussion for a
new entrant in the extension section. In the rest of the technical analysis, we focus on
bids for existing investments.
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4.2. A simple example

We start to illustrate our analysis with an example of bidding behavior with an exist-
ing plant. We assume a first product design implementation (case (a)) with a single
transaction phase of nt

1. A second implementation (case (b)) is based on two shorter
products of the same length nt. For simplicity we assume that nt

1 = 2nt. We denote T̄1

the start of the transaction phase for the single product of case (a) and the first product
of case (b), and T̄2 = T̄1 + nt

1 the start of the second product of case (b). The periodic
fixed cost is incurred at T̄1 and T̄2, meaning that we have nt = nom. We denote the
total profit collected on the whole period as Π1, while we denote the profit collected
on the first sub-period Π

′
2, and on the second sub-period Π

′′
2 . Finally, we denote t0 the

date when the auction for the single product of case (a) and the first product of case
(b), and t

′
0 the auction date for the second product of case (b). For any case, the period

between an auction and the starting date is equal and noted nd. We illustrate the two
implementations in the following figure.

(a)

(b)

t0 T̄1 T̄1 + nt
1Π1

t0 T̄1

T̄2t
′
0 T̄2 + nt

2

Π
′
2

Π
′′
2

Following our framework the expected bid at t0 in the case (a) noted b1 is equal to:

b1 = e−rnd

[
E∗

0

[
com

∫ 2nt

0

e−rtdt−
∫ 2nt+nd

nd

πtdt

]]+

Which gives when rearranged:

b1 = e−rnd

[
com

∫ nt

0

e−rtdt+ com
∫ nt

0

e−r(t+nt)dt− 2nterndπ0

]+

While the sum of the two bids in the case(b) noted b2 is:

b2 = e−rnd

[
E∗

0

[
com

∫ nt

0

e−rtdt−
∫ nt+nd

nd

e−rtπtdt

]]+
+

e−r(nt+nd)

[
E∗

0

[
com

∫ nt

0

e−rtdt−
∫ 2nt+nd

i=nd+nt

e−rtπtdt

]]+

14



Which gives when rearranged:

b2 = e−rnd

([
com − nterndπ0)

]+
+
[
come−rnt − nterndπ0)

]+)

The proposition 1 states that the following inequality always holds for any value of the
expected inframarginal rent and periodic fixed cost: b2 ≥ b1.

Proposition 1. Assuming the absence of risk aversion and for an existing investment, a product
with a longer transaction phase will always lead to a lower bid than the sum of the bids for
products with a shorter transaction phase.

Proof. The proof is straightforward and is given by the triangle-inequality like of the
maximum function: max(x, 0)+max(y, 0) ≥ max(x+y, 0). Using the previous example,
x takes the value of: com − nterndπ0; and y takes the value of: come−rnt − nterndπ0.

A risk-averse investor could imply a different result. Indeed, a more prolonged trans-
action phase implies a higher variance than the sum of shorter products’ variance. It
stems directly from the Geometric Brownian Motion assumption. Therefore, for high-
risk-averse investors, having the possibility to bid again could be more profitable if the
uncertainty of being retained in future auctions is not significantly high. This propo-
sition holds either from an initial analysis of the bids at date t0 or reasoning on an ex-
pected basis. It is straightforward that the bids and their realized total value can differ
from the proposition. For instance, assume that the wholesale price follows a path well
above its expected value, then the sum of the bids for lower transaction phases might
finally be lower than for a capacity product with a longer transaction phase.

It should be noted that when the closing period differs from the transaction phase, the
producers’ offer can be significantly affected without impacting the previous proposal.
When nom > nt then the opportunity cost is estimated based on the nom period with the
implication that in subsequent auctions, a closing period that overlaps two transaction
phases is not taken into account in the offer for the second auction, the opportunity cost
being zero because the plant is already open. Similarly, when nom < nt, the opportunity
cost is calculated based on a period knom such that k determines the smallest period
greater than the transaction phase (k ≡ min(knom − nt) s.t k ∈ Z+). When nt is a
multiple of nom, this does not change the offer made by the producer (see, for instance,
the previous example). Otherwise it is similar to the case nom > nt. Using these results,
we will not study complex cases where the closing periods and transaction phases are
not equal in the rest of this paper. While they can explain some actual bidding behavior
in volatility and magnitude, they do not change the actual results.

15



V. THE REAL OPTIONS FRAMEWORK

5.1. A capacity bid as European Put Option

The previous framework provides the marginalist intuition behind the bidding behav-
ior on a capacitymarket. However, it does not consider all the possible rationales, espe-
cially when the transaction phase of a capacity product is associated with irreversible
managerial decisions. In this section, we conceptualize the capacity product as a real
option that allows the option value to not be available over a closing period to avoid
potential losses.

We model the option value using the canonical option pricing theory. Following the
most simple case with a transaction over one period t with nt = nom = 1, then the
availability decision associated to the capacity product for an existing investment is an
European Put Optionwith a payout profile ofmax(com−πt, 0). In this case, the periodic
fixed cost can be compared to the strike price of a financial option, and the expected
inframarginal rent can be compared to the underlying asset. Following the standard
approach and themarginalist assumption, the proposition 2 states the bid on a capacity
market is equal to the option value of being available:

Proposition 2. Given the payout profile associated with the capacity product, a bid noted bopt

in an auction set at t0 = 0 for a unique transaction phase at starting nd periods after the auction
and a periodic fixed cost of comis:

bopt(π0, c
om) = −π0ϕ(z) + e−rnd

(comϕ(z + σ
√
nd)) (11)

z := −
ln [π0]− ln [com] + (r + σ2

2
)nd

σ
√
nd

(12)

With ϕ the cumulative distribution function of a standard normal distribution.

Proof. See Appendix

5.2. A capacity bid as Basket Option

We now expand this approach to the more complex case where a transaction phase
covers multiple uncertain inframarginal rents. We start with the first case by hanging
up our setup with the financial theory for exotic derivatives. We assume that when
the transaction phase is expanded over multiple periods, the European Put Option be-
comes a modified Basket Option. In finance, a Basket Option is defined by a payoff
profile dependent on the value of a portfolio of assets, each following a stochastic pro-
cess such as a Geometric Brownian Motion which can be correlated or independent.
Hence, the availability decision associated with a capacity product is similar to exercis-
ing a Basket Option, in the sense that the irrevocable decision to stay open at a date T̄
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implies collecting each inframarginal rent during the transaction phase, which individ-
ually follows a Geometric Brownian Motion. With a Basket Option, its exercise would
have meant the collection of the individual stock prices. The primary constraint associ-
ated with pricing such option is the absence of closed-form representation of the price
since a sum of log-normally distribution random variable is not log-normal. However,
we use the well-known approximation stated in Assumption 1 to define an analytic ap-
proximation of the option price. It allows deriving the following proposition regarding
the bid on a capacity market when the transaction phase covers multiple inframarginal
rent periods.

Proposition 3. Given the payout profile associated with the capacity product, a bid noted bopt

in an auction set at t0 = 0 for a transaction phase starting of length nt, starting nd periods after
the auction is set and with a equal closing period of nt is:

bopt(π0, c
om) = −π0n

tϕ(z) + Comϕ(z + v) (13)

z = −
m− ln

[
com

∫ nt

0
e−rtdt

]
+ v2

v

Com = e−rnd

com
∫ nt

0

e−rtdt (14)

Withϕ the cumulative distribution function of a standard normal distribution ,m and v2 defined
as follow:

m = 2 ln

[
π0

∫ nt

0

er(i+nd)dt

]
− 0.5 ln

[
π2
0

∫ nt

0

∫ nt

0

er(t+s+nd)+(t+nd)σ2

dtds

]

v2 = ln

[
π2
0

∫ nt

0

∫ nt

0

er(t+s+nd)+(t+nd)σ2

dtds

]
− 2 ln

[
π0

∫ nt

0

er(i+nd)dt

]

Proof. See Appendix

This definition of a bid on a capacity market can be understood as follows. First, note
that the inframarginal rent term π0n

t is linked to the Geometric Brownian Motion and
the risk-free version of the inframarginal rent process7. The fixed cost term is the sum
of the actualized periodic fixed costs associated with the decision to stay open. Finally,
the value z and z+ v are linked with Assumption 1, with the first term in the logarithm
ofm (second term in v2) represents the mean of the sum of the inframarginal rent, and

7Under the equivalent martingale measure Q, the drift of the inframarginal rent is equal to the risk-
free rate, meaning that any actualized expected value of the rent is equal to its initial value π0.
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the second term in the logarithm ofm (first term in v2) is the secondmoment of the sum
of the inframarginal rent.

The extension to the case of a transaction phase covering different closing periods is
straightforward. When nom > nt, then the implicit phase duringwhich the option value
is estimated is nom. Similar to the net present value case, having a longer duration for
the closing period than the implemented transaction is similar to having an implicit
transaction phase of the same duration as the closing period. In the case of nom < nt,
then we can define the new strike price as the sum of the expected periodic fixed cost
incurred as soon as the transaction phase has begun and continued until its end.

5.3. The sum of expected capacity bids

Once we derive the bid for a single product, we can now analyze the sum of the bids
for multiple capacity products. Assumption 2 states that even though some correlation
exists between inframarginal rents over the investment lifetime, the decision to close
during one period does not modify the rent value in a subsequent period. It allows
defining the sum of the bids for multiple capacity products as the sum of the value of
their options estimated at a single date; for simplicity, here, the auction at which the
longer product is sold or the first shorter product is sold.

Proposition 4. Given the payout profile associated with a capacity product of length nt

k
with

the same closing period of nt

k
, the sum of expected bids noted bopt made during k successive

auctions is:

bopt(π0, c
om) = −π0

nt

k

k∑
j=1

ϕ(zj)dt+ come−rnd

∫ nt

k

0

e−rtdt
k∑

j=1

e−r(j−1)n
t

k ϕ(zj + vj)

With:

zj = −
mj − ln

[
com

∫ nt

k

0
e−rt

]
+ v2j

vj

Withmj and v2j defined as follow:

mj = 2 ln

[
π0

∫ ntj

nt(j−1)

er(t+nd)dt

]
− 0.5 ln

[
π2
0

∫ ntj

nt(j−1)

∫ ntj

nt(j−1)

er(s+t+nd)+(t+nd)σ2

dtds

]
(15)

v2j = ln

[
π2
0

∫ ntj

nt(j−1)

∫ ntj

nt(j−1)

er(s+t+nd)+(t+nd)σ2

dtds

]
− 2 ln

[
π0

∫ ntj

nt(j−1)

er(t+nd)dt

]
(16)
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Proof. With no correlation between the decision to close and the profits made during
other periods, the different capacity products could be conceptualized as options on
different assets (See Trigeorgis 1993).

VI. COMPARATIVE STATISTICS ON THE CAPACITY BIDS

Using the results of the previous section, we compare the bidding behavior in a capac-
ity market depending on: (i) the drivers behind the opportunity cost, (ii) if producers
follow the net present value framework or the real options framework, (iii) the design
of the transaction phase for a given period.

We start by studying the evolution of the bids under the real options framework, espe-
cially concerning the length of the product. As our framework is new to this topic, we
also describe the effect of the main variables on the bid. This step is particularly rel-
evant due to the length of the transaction phase, which significantly complexifies the
analysis. Then, we show how the real option bidders value the possibility of closing
to avoid the fixed costs. Namely, we describe the flexibility associated with the option
to close and how its value is impacted by the length of the transaction phase and other
variables. Finally, we discuss the impact of segmenting a capacity product in multiple
shorter transaction phases. In a similar fashion as the two previous analyses, we also
provide the impact of the drivers on the delta for the bids between different capacity
product designs.

6.1. The bids value

This analysis sheds light on how a capacity bid varies with its fundamentals. One of
the critical variables in this research is the length of the product nt. We also look at the
twomain variables of the opportunity cost as described in the net present value section,
namely the initial value of the inframarginal rent π0 and the fixed cost value com. Next,
we study the regulatory parameters chosen when the capacity market is implemented
nd, representing the waiting time before the transaction phase. Although, we left for
future work a deeper analysis of this parameter on market efficiency 8, our analysis
still provides some insight on its role in the bidding behavior on the capacity market.
Finally, we also study the impact of different volatility levels of the inframarginal rent
σ on the capacity bid. Indeed, one of the current policies in the power sector relies on
significantly increasing the share of renewables in the production mix. A key conse-
quence would be an immediate increase in the volatility of the wholesale price [16]. In
turn, it also has an indirect effect on the bidding behavior in the capacity market9.

For relevancy and simplicity, we assume that the periodic fixed cost occurs simultane-
ously as the inframarginal rent in this section, namely every t period. Therefore, when
the transaction phase increases by one period, the producer gains an uncertain infra-

8The waiting time has been numerously cited as a critical regulatory parameter when designing ca-
pacity markets. However, to our knowledge, very few papers have looked into this issue from a model-
ing perspective.

9A second indirect effect is the decrease of the average wholesale price due to a merit order effect,
which translates into a lower initial value π0.
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marginal rent and sustains an additional unitary periodic fixed cost. We provide in
proposition 5 an overview of the effect of increasing the transaction phase on the bids
for the net present value case and the real option case. Note that for the real options
framework, we could not find a closed-form solution in terms of the value of the vari-
ables for which a clear-cut answer on the sign of the derivatives exists. However, we
can provide sufficient general conditions so that such a solution exists. We also show
that for extreme values of nt, the derivative of the bid with respect to nt is always pos-
itive. This result tends to confirm that an increase of nt increases the capacity bid on
the capacity market under a real options framework, which is not necessarily the case
under the net present value framework. The conditions presented in this section are
usually given on the derivatives of the variable z, which represents the threshold on the
probability that the sum of the actualized fixed cost (the strike price) is above the sum
of uncertain inframarginal rent (the underlying asset), and on specific ratios between
the density functions ϕ(z) and ϕ(z + v), which express the probability of a standard
normal distribution at their respective value10.

Proposition 5. NPV: The bid is a concave function with respect to the length of the transaction
phase nt. The threshold in term of fixed cost between an increasing bid and a decreasing bid is
given by: com = π0e

r(nd+nt).

RO: An increase in the transaction phase increases the capacity bid if the following conditions
holds:

• Fixed costs: ccom
∫ nt

0
e−rtdt ≥ √

π0V ev
2(2r ∂v2

∂nt −1)

• Cdf ratio: S1Com

π0
≥ R0 =

ϕ(z)
ϕ(z+v)

• Df ratio: Com

ntπ0
≥ R1 =

φ(z)
φ(z+v)

with Com the actualised sum of the fixed cost and S1 = e−rnt
/
∫ nt

0
e−rtdt.

Moreover, when nt → +∞ then the derivative of the capacity bid with respect to nt converges
toward to the marginal change of the expected fixed cost equal to come−r(nt+nd) which is always
positive. When nt → 0, then the derivative of the capacity bid with respect to nt converges
either toward 0 or toward a positive value equal to com(e−r(nt+nd) − π0)ϕ(z)

Proof. See Appendix

The intuition behind this result is as follows. For the net present value bid, it is straight-
forward because the bids are equal to π0n

t − Com. Therefore the bid starts decreasing
as soon as the marginal value of the expected profit at the end of the transaction phase
exceeds the additional fixed marginal cost.

For the option value, recall that it is composed of two distinct parts11: (i) a negative
part which stands for the expected sum of inframarginal rent adjusted by the cumu-

10Recall that ϕ′(z) = φ(z).
11The derivative of the bid value with respect to nt has the following form: ∂bopt

∂nt = −π0(ϕ(z) +

nt ∂z
∂ntφ(z)) + Com(S1ϕ(z + v) + ∂z+v

∂nt )φ(z + v)).
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lative distribution function of the standardised normal distribution: −π0n
tϕ(z) ; (ii) a

positive part which stands for the strike price represented through the cost of staying
available, also adjusted by the cumulative distribution function: Comϕ(z+v); with Com

the actualised sum of the fixed cost. For both parts, an increase of nt has two effects:
a direct effect, linked to the marginal increase in the profit and the fixed cost; and an
indirect effect via a change in cumulative distribution function value. The sign of this
indirect effect depends on the sign of the derivatives of z and z + v with respect to nt.
We analyze now how the conditions can be widened or tightened to have a clear-cut
effect on the sign of nt on the bid.

The first effect is straightforward: an increase in nt also increases the profit and fixed
costs. For the indirect effect, we start with the fixed cost part. Recall that the cumula-
tive distribution function represents the the probability that the periodic fixed cost is
above the inframarginal rent (ie. Fntπ0(C

om) = ϕ(z + v)). The sign of the correspond-
ing derivative ∂z+v

∂nt is positive only if the following condition on the fixed cost holds:

ccom
∫ nt

0
e−rtdt =

√
π0V e−2rv2 ∂v2

∂nt , with V 2 second moment of the distribution of the in-
framarginal rent sum during the transaction phase. 12 In this case, an increase of nt

always implies an increase of the probability that the sum of the actualized fixed cost
is above the sum of uncertain inframarginal rent. Hence, both effects of the part (ii) are
always positive, implying that an increase of nt increases the option value.

However, the effect can be ambiguous for some value of nt due to part(i). The sign
of the corresponding derivative ∂z

∂nt is negative only if the following condition on the

fixed cost holds: ccom
∫ nt

0
e−rtdt =

√
π0V ev

2(2r ∂v2

∂nt −1). When the derivative is negative
it decreases the probability that the inframarginal rent is above the fixed cost given
by ϕ(z), (recall that E [ntπ0|ntπ0 < Com] = ntπ0ϕ(z)), hence it lowers the bid value. This
value is decreasingwith nt. Therefore, the possibility that the bid is positively impacted
by nt increases with nt.13

The last part of the proposition supports the results that the effect of nt is almost surely
positive on the bid value. This result relies on the evolution of the distribution function
and the cumulative distribution function φ and ϕwith respect to nt. When nt converges
toward 0 or+∞, the evolution of threshold values z and z+ v implies that the function
φ converges towards 0 is consistent with a normal distribution. For the cumulative dis-
tribution function, we use first the two conditions on the fixed costs which determines
the sign of ∂z

∂nt and of ∂z+v
∂nt

14. the first condition converges toward 0 as nt, implying that
nt always decreases z. Therefore, ϕ(z) converges toward 0 as nt increases, whichmeans
that an increase in the length of the transaction phase always decreases the probabil-

12This is a weaker condition so that Com

ntπ0
≥ R0 which implies a positive effect of nt on the bid. Note

that this threshold is always increasing with nt.
13Note that the ratiosR0 andR1 are similar to other ratio that can be found in the model. For instance,

the constrain that the option value is always positive implies that we have the following condition:

Com

ntπ0
≥ ϕ(z)

ϕ(z + v)

14Recall their respective values: ccom
∫ nt

0
e−rtdt =

√
π0V ev

2(2r ∂v2

∂nt −1) and ccom
∫ nt

0
e−rtdt =

√
π0V e−2rv2 ∂v2

∂nt .
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ity that the inframarginal rent is above the period fixed cost. On the other hand, the
second condition converges toward +∞when nt increases15 This implies that ϕ(z + v)
converges towards 1, as a reverse effect of ϕ(z). Finally, when nt converges towards
0, the volatility of the sum of inframarginal rent converges towards 0, which implies
that ϕ(z+v) converges toward ϕ(z). When the sign ∂z

∂nt is negative, then ϕ(z) converges
towards 0 as nt decreases, which proves the first convergence. When the sign ∂z

∂nt is
positive, then the relation between the value of π0 and the moments of the sum of the
inframarginal rent gives the second convergence.

We turn now to the other drivers for the capacity bid, and we provide the result in
lemma 1. Again, as there are no closed-formed solutions, we provide conditions for
which the drivers have clear-cut signs on the bid value.

Lemma 1. The value of the bid under real option:

1. decreases with the inframarginal rent π0

2. increases with the periodic fixed cost com

3. is ambiguous with the waiting time nd

4. is ambiguous with the inframarginal rent volatility σ

Result (1) and (2) holds if the condition Com

ntπ0
≥ R1 is satisfied.

For Result (3), nd always decreases the bid when com
∫ nt

0
e−rtdt ≥ V e−M r+σ

r−σ , Com

ntπ0
≥ R1 and

r > σ are satisfied. If only the first condition holds and that −rϕ(z + v) ≥ ∂v
∂ndφ(z + v), then

nd always decreases the bid.

For Result (3), nd always increases the bid when com
∫ nt

0
e−rtdt ≥ V e−M r+σ

r−σ and ∂v
∂ndφ(z+v) ≥

−rϕ(z+v). Otherwise nd has an undetermined effect on the bid price and depend on the relation

between Com

ntπ0
and the ratio R3 =

∂z

∂nd ϕ(z)

−rϕ(z+v)+ ∂v

∂nd φ(z+v)

For Results (4), σ always increases the bid if com
∫ nt

0
e−rtft ≤ M2

V
and Com

ntπ0
≥ R1 are satisfied.

Otherwise if com
∫ nt

0
≤ V , then σ always increases the bid if Com

ntπ0
≥ φ(z) ∂z

∂σ

φ(z+v) ∂z+v
∂σ

. If the conditions

are not respected then σ is always decreasing the bid.

Proof. See Appendix

The first and second results are standard regarding real options theory (see, for in-
stance, [27]). They have an opposite interpretation: an increase of the initial infra-
marginal rent signal that future revenues will also increase. Consequently, it decreases
the value to close to avoid the fixed cost, as those costs are more likely to be covered
by the inframarginal rent. On the other hand, as the fixed cost increase, then the value
increases.

15Which is consistent with the fact that the volatility of the sum of inframarginal rent v increases with
nt.
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The analysis of nd is less intuitive and relies on stronger conditions on the fixed cost.16

The effect of nd is unique on the inframarginal rent part of the bid and depends on
the sign of the corresponding derivative. If the derivative of this part ∂z

∂nd is negative,
it implies that if nd increases, then the probability that the rent is above the fixed cost
decreases. Otherwise, the reverse effect happens. It is given by the first condition on
the fixed costs for nd to have a negative effect on the bid. To highlight the effect of nd on
the fixed cost part of the option value we rearrange the conditions of result (3) which
gives: Com(φ(v + v) ∂v

∂nd − rϕ(z + v)) + ∂z
∂nd∆φ with ∆φ = (Comφ(z + v) − ntπ0φ(z)).

This value is central in our analysis, and it is always positive as long as Com

ntπ0
≥ R1 holds

and can be found in the four derivatives of the bid value. It gives the second condition
for nd to have a negative effect on the bid. The derivative represents the net marginal
change in terms of the bid value when the variables marginally impact z.

We turn now to the first part of the rearranges derivative.17 Whennd increases, it always
decreases the value of the fixed cost because of a discounting effect (second negative
term), while also changing the volatility of the revenue (first term). Following the anal-
ysis of ∂z

∂nd , it is sufficient for its sign to be negative and also to have a negative sign
∂σ
∂nd to have the decreasing effect of nd on the bid. It has straightforward intuitions: if
an increase of nd decreases the value of the fixed costs, the volatility, and the proba-
bility that the inframarginal rent is below the fixed costs, then the option value also
decreases, hence the bid. The derivative in the first term is negative if and only if ∂v

∂nd is
also negative. That is, an increase of nd decreases the volatility of the total revenue. It is
the case only when the risk-free rate (r) is above the volatility of the inframarginal rent
(σ). It gives the third condition for nd to have a negative effect on the bid. Therefore the
first group of conditions for nd simply states the conditions under which every part of
the derivative is negative.

Finally, when at least one derivative is not negative, then the sign is ambiguous and
depends on the magnitude of each part of the derivative. For instance, when ∂z

∂nd is
still negative, but an increase of nd decreases the volatility of the sum of inframarginal
rent (i.e., ∂v

∂nd is positive), it is sufficient that the negative effect of the inframarginal rent
is higher than the gains in terms of volatility to ensure that the sign of nd is negative.
Therefore it gives the second set of conditions. The opposite case when ∂z

∂nd is positive
gives the third set of conditions.

To conclude, we state that the effect of σ is also counter-intuitive when the conditions
do not hold. Again, we rearrange the derivative which gives18: Comφ(v+ v) ∂v

∂σ
+ ∂z

∂σ
∆φ.

First, note that the first derivative is positive as an increase of the volatility of the peri-
odic revenue always increases the volatility of the total revenue. Therefore the ambi-
guity of σ on the bid value only depends on the sign of the second derivative ∂z

∂σ
, and

on the magnitude of the positive parts. When analyzing the sign of the derivative ( ∂z
∂σ
),

we find that it requires one condition to be negative: com
∫ nt

0
e−rtft ≥ M2

V
. Recall that

M2 and V 2 are the first and second moments of the distribution of the inframarginal

16The derivative of the bid value with respect to nd is: −π0n
t ∂z
∂ndφ(z)+Com(−rϕ(z+v)+ ∂z+v

∂nd φ(z+v).
17Note the absence of any inframarginal rent in this part due to the Geometric Brownian Motion as-

sumption where the rate of increase of the inframarginal rent is equal to the risk-free rate.
18The derivative of the bid value with respect to σ is: −π0n

t z
σϕ(z) + Com ∂z+v

∂σ .
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rent sum during the transaction phase.19 Such a condition highlights the key role of
the difference between the fixed costs and the expected value and distribution of the
inframarginal rent. When the fixed costs are relatively high compared to the mean
value adjusted by the risk of the total revenue (i.e., the conditions is satisfied), then a
marginal increase of the volatility always implies a loss for the option value: it increases
the occurrence of having the sum of inframarginal being above.

6.2. The value of flexibility

We turn to the analysis of the difference between a bid under a net present value frame-
work and a bid under a real options framework. As in the canonical real options theory,
the possibility of the managerial option always creates additional value for the pro-
ducers. Consequently, when comparing the difference between bidding the missing
money and bidding the option value associated with the possibility to close, we have
the following proposition.

Proposition 6. Under the same market design, the bid in a capacity market when producers
consider the option value is always higher or equal to the bid using only a net present value
approach.

bopt ≥ bnpv (17)

The proof for the proposition is straightforward and comes from the definition of an net
present value and a real option bid. Under the first framework, producers bid the max-

imum of their expected Missing Money: bnpv = e−rnd
[
E∗

0

[
Com −

∫ nt

0
e−rt(πt)dt

]]+
. On

the other hand, under the second framework, producers bid their option value, namely

the expectedmaximumof theirmissingmoney: bopt = e−rndE∗
0

[[
Com −

∫ nt

0
e−rt(πt)dt

]+]
.

Therefore we always have bopt ≥ bnpv. Using this result we can now analyse the value
of the flexibility which is the difference between the two bids. We define Γ as the value
of the flexibility such as: Γ = bopt − bnpv. It is defined in the following equation:

Γ = −π0n
t(ϕ(z)− 1) + Com(ϕ(z + v)− 1) (18)

The analysis of the evolution of Γ with respect to the main variables is similar to the
comparative statistics made in the previous section. Indeed, for any variable x note
that ∂Γ

∂x
= ∂bopt

∂x
− ∂bnpv

∂x
. Therefore, the net effect of the previous results can either be in-

creased or decreased depending on how the bid under the net present value framework
behaves. We summarise the main results in proposition 7.

Proposition 7. The length of the transaction phase has an ambiguous effect on the value of the
flexibility:

• Γ is increasing in nt when com ≤ π0e
r(nd+nt)

19Note the resemblance with the Sharp Ratio used in finance which defines the performance of an
investment compared to a risk-free asset, after adjusting for its risk.
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When the condition does not hold, given the following ratio:

R4 =
1
ntϕ(z) +

∂z
∂ntφ(z)− 1

nt

S1ϕ(z + v) + ∂z+v
∂nt

φ(z + v)− S1

(19)

• Γ is increasing in nt if S1(ϕ(z+ v)− 1)+ ∂z+v
∂nt

φ(z+ v) > 0 and the following condition
holds: Com

ntπ0
≤ R4

• Otherwise, Γ is increasing in nt if S1(ϕ(z+v)−1)+ ∂z+v
∂nt

φ(z+v) < 0 and the following
condition holds: Com

ntπ0
≥ R4.

• When the conditions do not hold, Γ is decreasing in nt

Proof. The proof is similar to the Proposition 5, the results follow directly from the
derivative of the bid with respect to the variable.

The ambiguity of nt on the value of flexibility comes from the concavity of the net
present value bid as described by the proposition 5 andmonotonicity of the real option
bid. When the former decreases with respect to nt, the flexibility is always increasing
as the latter increases. However, when the net present value bid increases, the sign of
the flexibility derivative depends on the magnitude between a marginal increase of the
net present value bids and the marginal increase of the real option bids. Those oppos-
ing effects are materialized in the ratio R4 with the negative terms− 1

nt and−S1, which
represent the marginal increase of respectively the profit and the fixed cost part. Given
the results expressed in proposition 5 and proposition 7, we find that the condition un-
der which the flexibility increases with respect to nt is weaker than the condition under
which the real option bid increases with respect to nt.

This ambiguity renders significantly complex the analysis of the value of flexibilitywith
respect to other drivers. While, we had intuitive results and mild conditions for the
two fundamental drivers of the bids in proposition 5, namely π0 and com. The marginal
increase of the net present value bids is always superior to the direct effect observed in
the real option bids when the two drivers increase. For instance, recall that an increase
of π0 both directly lower the value of the option due to a marginal decrease of−ntϕ(v),
while indirectly modifying the option value with a change in the probability of the
maximum function: −π0n

t ∂z
∂π0

φ(v). When we introduce the change in the net present
value bids, the marginal decrease when π0 is equal to −nt. It implies that we always
have: nt ≥ ntϕ(v), as ϕ(v) is a cumulative density function. Therefore, the net effect on
the value of the flexibility is always going to be dependant on the magnitude between
the net direct effect nt(1− ϕ(v)) and −π0n

t ∂z
∂π0

φ(v), and not anymore on the sign of the
derivative.

However, for the volatility of the inframarginal rent, we find a strict identical effect
between the real option bid and the flexibility value. Indeed, the net present value bid
is independent of the volatility , hence ∂Γ

∂σ
= ∂π0

∂σ
. Therefore, the sign and the conditions

discussed in lemma 1 can be applied to the analysis of the value of the flexibility with
respect to σ.
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6.3. Bids and product design

In this section, we analyze the effect of segmenting the capacity product into multiple
shorter products. More precisely, we assess the difference between the bid for a single
capacity auction considered as a ”long” product covering a transaction phase of nt pe-
riods with the sum of expected bids for k successive capacity auctions where producers
can sell ”short” product of length nt

k
. The difference in the cost of a capacity market,

noted ∆bopt, given this configuration is defined in the following equation and uses the
proposition 3 and proposition 4:

∆bopt = −πt0n
t

(
ϕ(z)− 1

k

k∑
i=1

ϕ(zi)

)
+ Com

(
ϕ(z + v)− S2

k∑
i=1

e−r(i−1)n
t

k ϕ(zi + vi)

)
(20)

With S2 =
∫ nt

k
0 e−rtft∫ nt

0 e−rtft
.

This equation is key to understanding different product designs’ impact on bidding be-
havior under the real options framework. Indeed note that both for the profit and the
fixed cost part of the difference, the equation shows that the sign of ∆bopt depends on
the relation between the cumulative distribution function of the longest product (ϕ(z)
and ϕ(z+v)) with an average value of the cumulative distribution function of the short-
est product. This average is shown directly with 1

k
or indirectly with the value of S2,

which takes into account the discounting effect of the periodic fixed cost. Therefore, it
is sufficient for the average effect for the profit part to dominate (resp. to be dominated)
ϕ(z) and the second average effect to be dominated (res. dominate) ϕ(z+ v) to have an
increase (resp. decrease) of the bidwhen segmenting the capacity product into a shorter
product. Againwe do not have a closed-form solution that allows guaranteeing a value
for the variables to give a clear-cut answer on the sign of this difference. However, we
provide in lemma 2 sufficient conditions that allow such a clear-cut answer to exist.

Lemma 2. The sum of expected bids of shorter products is always lower or equal to the individ-
ual bid for the longer product when each threshold zi is lower or equal to the unique threshold
z, and that each threshold zi + vi is above or equal to the unique threshold z + v.

Proof. The proof is straightforward and stems from the definition of ϕ as the cumulative
density function of a standard normal distribution

Those conditions imply that the probabilities (and the average probability) that the sum
of inframarginal rent is below the fixed cost (i.e., ϕ(z+v) and ϕ(zi+vi)) are consistently
higher under the product design with short term products. Naturally, this condition
states that it should also decrease the curtailed expected value given in part by the
expressions ϕ(z) and ϕ(zi) for the shorter period product design.

From the definition of ∆bopt, it is easy to deduce its marginal change with respect to a
change of the main drivers. The comparative statistics on the difference between two
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market designs encompass both the analysis provided in the first section on the value
of the bid and the average component present in equation 20. When we derive this
value with respect to the set of variables (namely, π0 c

om nd and σ), we find that it de-
pends again on some conditions on the fixed costs and the sign of the derivatives. More
precisely, it relies on the difference between the marginal effect of the first section on
the averagemarginal effect of the sum of expected bids. Both elements can be analyzed
separately using the results in lemma 1.20 To see this, we provide in the following equa-
tion the marginal change of∆bopt with respect to the volatility of the inframarginal rent
σ:

∂∆bopt

∂σ
= −π0n

t

(
∂z

∂σ
φ(z)− 1

k

k∑
1

∂zi
∂σ

φ(zi)

)
+

Com

(
∂z + v

∂σ
φ(z + v)− S

k∑
i=1

∂zi + vi
∂σ

φ(zi)

) (21)

Therefore, an increase in the volatility of the inframarginal rent positively increases the
difference between the bid for the longer product and the sum of the expected bid for
shorter products if and only if the average effect of the latter is above (resp. below)
the marginal change of the former for the profit part (resp. periodic fixed cost) of the
option value.

VII. CASE STUDY

We illustrate our model by simulating a power plant participating in the French capac-
ity market. This mechanism has been recently implemented, with a first auction held
in 2016 for a transaction phase starting in 2017. The main characteristics regarding the
supply side rely on a 4-year quasi-continuous forward market. Each capacity product
covers a year, with an obligation of being available concentrated between January and
March. They can be traded up to four years before the delivery year, either through
multiple auctions or bilateral tradings. Figure 1 shows the clearing price in the French
capacity market for the corresponding yearly period of the transaction phase and each
auction before the starting date. Excluding the specific 2017 and 2018 period, the capac-
ity price is on average equal to 23 191e /MW,with amaximum value of 47 400e /MW
and a minimum value of 13 000 e /MW. We use the average price for the transaction
phase in 2022 as a comparative basis when simulating the output using the previous
results. The average price is equal to 25 314 e /MW.

We consider an investment in a CCGT gas power plant for which the lifetime is 30
years, and we normalize the capacity to 1MW. The production costs have been taken
from the consultation report made by RTE, the transport and system operator, which
had to build the rules for the capacity market. For an existing power plant, the fixed

20Each element of the sum for shorter products are independent, which allows adding the marginal
change of each element.
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Figure 1: Auction results for the French capacity market

operating cost is equal to 32.5e /kMW.yr,21 which translates into a periodic fixed cost
value of 98.63 e /MW.day. The variable production cost includes the fuel cost and the
carbon costs and is equal to 25 e /MWh. We consider them fixed during the lifetime
of the investment.

For the French system, we assume the risk-free yearly rate is 2.32 %. It is the aver-
age interest rate of the 30-year government bonds for France between the years 2009 -
2021. It implies a daily value of 0.64%. Then, we estimate the stochastic process. First,
we analyze the forward Y1 traded on the French power exchange between the years
2010 - 2015. We find that the average daily electricity price over the period is equal
to 47.15e /MWh, with a maximum value of 61.65 e /MWh and a minimum value of
33.50 e /MWh. A gas power plant can be considered peak technology or semi-peak
technology in the French system, and it does not receive an inframarginal rent every
hour during its lifetime. Therefore, we first compute an average price duration curve
which gives the proportion of time for which the price exceeded a specific value. Then,
we use the data on themarginality duration of a gas power plant given by the yearly re-
port Functioning of the wholesale electricity from the CRE, the French electricity regulator.
We find that on average such investment is either themarginal or an inframarginal bid-
der for 57% of the time in a year, with a high deviation between years ranging from 5%
to 85% over the years 2010 - 2019. Given this significant range, and using the marginal
production cost and the price duration curve, we find an interval of daily inframarginal
rents from59e /day and 949e /daywith amean value of 641e /day for an investment
selling all the time.22 We acknowledge this value is highly uncertain and dependent on
the actual plant. Therefore, we use those values as a comparative order of magnitude
rather than real input 23. For the volatility of the inframarginal rent, we use the for-

21It is the mean value for a range between 30 and 35 e /kMW.yr.
22Therefore, we also consider the variable π0 as the average inframarginal rent being available all the

time on the wholesale market.
23A studymade by RTE has found that between 2010 - 2018, the annual inframarginal rent for a CCGT

ranges daily from28e /MWto 188e /MW.Thenumerical simulation gives the sameorder ofmagnitude
with respect to the initial value π0.
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Figure 2: Single capacity bid for different transaction phases value

ward Y1 traded on the French power exchange between the years 2010 - 2015. We find
a volatility value of 0.00578, close to the range used in [16] for the Italian market.24

7.1. Bids in a capacity market under the net present value and the real options
framework

We first analyze how the bid in a capacity market can vary with respect to the length of
the transaction phase. We provide the results both under the net present value frame-
work and the real options framework. Using the French capacity market as our refer-
ence design, we use an initial value for the transaction phase (nt) of one year with a
waiting phase (nd) of four years. The results of the simulation are presented in figure
2.

As shown in proposition 5, a capacity bid always increases with the length of the trans-
action phase under the real options framework. On the other hand, the net present
value bid can decrease for relatively high values of the inframarginal rent. For the ini-
tial values of nd and nt, beyond an initial value of 87.83 e /MWh, the bid is constantly
decreasing with respect to nt. The figure also shows that for a given initial value of the
inframarginal rent π0, the bid under the real options framework is always above the
bid under the net present value framework, as shown in proposition 6. We also pro-
vide the annualized value of the capacity bid for more clarity. We show in the second
figure the corresponding hypothesis for the two frameworks that leads to the same bid
as the average one observed in the French Capacity market for the transaction phase of
the year 2022. Under the net present value framework, the initial value for the infra-
marginal rent is equal to 12.5 e /MWh, which is significantly below the lower range

24Note that the value of the volatility is consistent with the threshold found in [25] regarding the
approximation condition of Assumption A .
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Figure 3: Comparative statistics on the capacity bid

of the value found using the forward data. It corresponds to being marginal only 1%
during a year on the electricity market. Under the real options framework, the initial
value is 130 e /MW, almost ten times higher than the previous value. This high value
is within the range of the marginality and corresponds to be marginal at least 11% of
the time. Note that the capacity price under the real options framework converges to-
wards the periodic fixed cost as expected when analyzing the derivative of the capacity
bid. Therefore, the real options framework always converges toward the canonical be-
havior of a capacity market. That is, the bids should be equal to the fixed costs. Finally,
the data used in the numerical illustration shows that the real option bids tend to in-
crease more rapidly than the net present value bids, which implies that the flexibility
increases concerning the length of the transaction phase.

7.2. The effect of the waiting time and the volatility on the capacity bid

We analyze in this section how the bid on a capacity market can be modified by choos-
ing a policy instrument, namely the waiting time between the capacity auction and
the start of the transaction phase, and by the volatility of the inframarginal rent, a key
variable to understand industrial decisions in the power sector. Figure 3 provides the
result of our numerical simulation

Regarding the waiting time, we underline the ambiguous effect of this variable on the
capacity bid. Beyond a specific value of nd represented by the black dots on the first
figure, an increase of the value of nd continuously decreases the capacity bids. Below
this value, the waiting time always increases the capacity bid. This threshold depends
on the assumption concerning the initial value of the inframarginal rent. A higher ini-
tial value implies a higher threshold. To say it differently, when the producer forecasts
a more profitable investment, it decreases the capacity bid and reduces the potential
negative effect of nd on the bid. The reason for such results is as follows. First, given
the initial data, the bid part relative to the inframarginal rent is always positively im-
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pacted by nt. It means that the sign of the derivative of z with respect to nd is always
negative. On the other hand, the sign of the second part relative to the fixed costs is
mostly negative only when the initial value of the inframarginal rent is low. Recall that
this part is composed of a negative value due to the risk-free rate effect and an am-
biguous part due to the change in the cumulative distribution function. We find that
the first negative part is almost not affected by a change of nd, while on the contrary,
the second part is always positive, but it significantly decreases with nd with a lower
value for a higher π0. Indeed, the second part is linked to the probability of the fixed
cost above the inframarginal rent. Hence a higher value of the rent always means a
lower probability. All in all, the lower the probability, the higher the negative effect
of the risk-free rate and hence the potentiality of nd for having a negative effect on the
capacity bid. From a policy perspective, it seems less costly to set up a short waiting
phase for a profitable existing power plant and potentially allow a longer waiting time
for less profitable investment.

An increase in the volatility of the inframarginal rent always increases the capacity
bid in our numerical simulation. As illustrated in the second figure, higher volatility
makes the capacity bids converge toward the periodic fixed cost of the investment, even
though the initial value regarding the inframarginal rent is different. We also observe
a diminishing marginal effect of the volatility on the capacity bid, meaning that it is
sufficient for a slight increase from the current volatility to affect the bid significantly.
Those results stem from the fact that the effect of the volatility on the inframarginal
part of the bid is relatively small concerning the effect on periodic fixed cost. Indeed,
the periodic fixed cost part directly includes the effect of σ on the total volatility of the
revenue made during the transaction phase v, which is always positive. However, this
effect is significant only for a low value of σ, which explains this diminishing margin
effect. It has important implications, as, given this result, we should expect a rapid
increase in the bids in capacity markets when the first effect of the introduction of re-
newable in the system will start to be significant. When renewables have a sufficient
share in the production mix, the capacity price is assumed to be relatively stabilized.

7.3. Product design and capacity bid

We conclude our case study by studying the effect of segmenting a given capacity
product into successive products with shorter transaction phases. We use an initial
long product covering five years as the reference product, and we split this period into
shorter periods. We use the same initial value of nd of four years. We provide in figure 4
the results of the numerical simulation for the net present value and the real option. The
point on the two figures represents four different product designs and k the number of
successive products, with five yr. a single product covering the five years (k = 1), 1 yr.
a yearly product (k = 5), semester a transaction phase covering six months (k = 10),
and quarter a transaction phase covering three months (k = 20).

This simulation confirms the reverse effect of the choice of the product for the two
frameworks: under the real options framework, the bids are in expectation lower with
shorter products, while under the net present value framework, amore extended trans-
action phase always implies lower bids. For the latter case, this is explained by the
possibility given by a more extended transaction phase to have positive revenue of a

31



Figure 4: Evolution of the expected bids for a single long product and the sum of the
expected bids for shorter periods.

specific period covering the potential loss incurred during another period in the trans-
action phase because of the fixed cost. This smoothing of the opportunity cost of par-
ticipating in the capacity market is impossible for shorter products as they imply dif-
ferent opportunity costs and decisions. On the other hand, we do not find the same
effect with the real options framework. Indeed, under this approach, the segmentation
directly impacts the expectation of the option value for shorter periods, which is not
the case under the net present value framework. To say it differently, the distribution
characteristics of the total inframarginal rents over a long period are different from the
sum of the distributions of the total inframarginal rents for successive shorter products.
Given our numerical data, we find that segmenting the bids into shorter periods nega-
tively impacts the inframarginal part and positively the fixed cost part of the bid. Given
that the former is always negative and the latter is always positive, this segmentation
continuously decreases the cost of a capacitymarket under the real options framework.
Finally, our results also show that the product design choice is different fromamarginal
perspective by exhibiting a diminishing marginal effect for the two frameworks. We
find that segmenting from a five-year period to a single-year period is sufficient to sig-
nificantly decrease the bid under the real options framework or increase the bid under
the net present value framework. Therefore, we show that it is unnecessary to make
the capacity market over-complex under the real options framework by having many
short products.
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VIII. EXTENSIONS

We provide in this section a discussion on two relevant policy issues associated with
the research questions of this paper. We first look at the implications of our analysis
for bids in the capacity market for new power plants. Then we discuss the effect of the
costs associated with the closing decision, which can only be assessed using our real
options framework.

8.1. Product design and bids for new entrants

The relation between product design in this paper and bids for new entrants relies on
the definition of the opportunity cost of entering the market as a new entrant. Indeed,
as shown in equation 10, the bids should be equal to the NVP of the investment over
the whole lifetime, including the two fixed costs (investment and operation) and the
two sources of revenues (wholesale and capacity market). Therefore, assuming that
the costs and the wholesale revenue are not impacted by the capacity market product
design, any changes in the value of the bids when the investment is already in the
market will impact the first bid even though we do not model the competition in the
capacity market. It has clear policy implications. Indeed, if policymakers wish for
more new entrants, it should aim at increasing the probability for those investments to
be retained when they first bid into the capacity market25. Therefore, lower entry bids
make this more likely to happen.

Following the previous analysis, we state in the lemma 3 this link between product
design and bids for the new entry:

Lemma 3. Under the net present value framework, shorter products imply that the initial bid
B0 for new investments is always lower or equal than the bid with a longer product.

Under the real options framework, shorter products imply that the initial bidB0 for new invest-
ments is always higher or equal than the bid with a longer product.

Proof. The proof is straightforward and is given by the results of proposition 1 and
when the conditions of lemma 2 hold.

To illustrate this discussion, we simulate the bid for a new entrant for a CCGT power
plant using the previous data. We provide in figure 5 the relation between the initial
value of the inframarginal rent and the capacity bid for a new entry and different capac-
ity product designs. As expected, the figure shows that for shorter products, the bids
in the capacity market is higher 26. This figure also illustrates the sensitivity for a new
power plant to enter the market when competing with existing investments. Indeed,
we find that to provide a price even below the current price cap on the French capacity

25Note that a longwaiting phase allows a new entrant to bid even though they did not build the power
plant.

26As a higher inframarginal rent implies a lower bid, if for the same bid the threshold value π0 is
higher, it means that the capacity bids are higher for the same threshold.
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Figure 5: Capacity bid for new entrant with respect to the initial inframarginal rent

market, the producer needs to assume an initial value for π0 of around 74 e /MWh for
the three capacity products. On the other hand, as soon as the assumed inframarginal
rent is above a value of 79 e /day, a new entrant always makes a null bid.

8.2. Penalty and mothballing costs

Finally, we discuss the effects of two drivers that increase the cost associated with the
availability to close to avoid the periodic fixed cost. They both recover two distinct
issues regarding the operation of an investment. However, they are identical in their
conceptualization concerning the capacity bid analysis: (i) a policy instrument being
the penalty associated with the failure to respect the obligation of being available by
voluntary closing the investment (ii) the closing costs associated with the temporary
shutdown of the power plant. They also have in common that a net present value
framework cannot consider them in the capacity bid analysis. We summarise in lemma
4 their effects on the capacity bid under the real options framework.

Lemma 4. Setting a penalty for the failure of not being available when a capacity product has
been sold, or the existence of closing costs always leads to a lower bid in a capacity market. An
increase in their value decreases the capacity bid.

Proof. See Appendix

The intuition behind those results is that the penalty or the closing cost decreases the
value associated with closing to avoid the fixed cost. Therefore, they decrease the op-
tion value, hence the bid in the capacity market. Regarding the penalty value, it should
be stressed that we consider in this section only the case when the power plant de-
liberately decides not to stay available, after observing a too low inframarginal rent,
for instance. On the other hand, we left for future work when the penalty is applied
because the power plant fails to stay available due to technical reasons. In this situa-
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Figure 6: Evolution of the capacity price with respect to different penalty value

tion, a penalty increases the opportunity cost associatedwith participating in a capacity
market, which increases the bid. 27

We provide in figure 6 a numerical illustration of different values of the penalty on the
bidding behavior in the capacity market. We assume that the closing costs are equal to
25% of the periodic fixed cost [1].

As expected, an increase in the penalty value decreases the bid in a capacity market.
We show the current value in the French capacity market of 40000 e /MW in addition
to the closing in the figure. To achieve the same price observed for the 2022 delivery
year, we find that the initial value regarding the inframarginal rent needs to be equal to
40.5e /day, which is almost half of the initial value to reach the same price without the
penalty or the closing cost. Our numerical illustration shows the significant sensitivity
of the choice of the penalty value when implementing the capacity market.

IX. CONCLUSION

In this paper, we provide a novel approach to analyze the bidding behavior in capacity
markets. We distance ourselves from the framework of the net present value, which
evaluates the bids on a capacitymarket as the net expected loss associatedwith the obli-
gation to have the investment available on the wholesale market. While the net present
value framework provides the fundamental rationales to understand the bidding be-
havior in capacity markets, it does not consider the value associated with the flexibility
embedded in the investment. Using a real options framework allows us to consider
both the uncertainty regarding the future revenue and costs of the investment and the
intrinsic value associatedwith the alternative of participating in a capacity market, that
is, to leave the market to avoid some fixed costs temporarily. We define the bid in a

27Such refinement of themodel can be analyzedusing the net present value framework andhas already
been studied on a Reliability Option mechanism by [26].
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capacity market as the option value associated with this closing option, and we apply
a pricing methodology of a Basket Option, an exotic derivative, to evaluate the real op-
tion value. Indeed, there is a similarity between this financial derivative, which allows
receiving a basket of different asses prices against a strike price, compared to the man-
agerial decision to stay open, receive revenues from the wholesale market periodically,
and sustain an irrevocable fixed cost.

We use this framework to assess two issues related to the implementation and the de-
sign of capacity markets. First, we deepen our understanding of capacity markets and
how prices are emerging on those competition-based mechanisms. Indeed, the use of a
novel framework allows us to assess the determinant of the bids differently, as we have
shown, for instance, for some drivers such as the waiting time between the auction and
the beginning of the transaction phase or the volatility of thewholesale revenue. There-
fore, any deviation from the actual value of the opportunity cost of participating in a
capacity market can be better understood. It is particularly relevant in the current en-
ergy policy perspective as capacity markets are usually criticized for their additional
burden onto consumers.

Then, we analyze the interplay between the product/commitment duration and the
opportunity cost for providing capacity availability. We show that the choice of a prod-
uct design can significantly affect the bids in a capacity market. Indeed, we find that a
longer transaction necessarily implies a higher bid than shorter products under a real
options framework. On the other hand, it is not always observed under a net present
value framework. We also compare opposite market design regimes between having
a long product sold in a unique auction or shorter products sold successively in the
same period. We find that the outcome depends on various factors, but ultimately, it
is more likely that the sum of bids for shorter transaction phases is lower than the in-
dividual bid for the long product. The opposite effect is observed for the net present
value framework, making the real option one all the more relevant.

We deepen the policy implications of our work by simulating the bids in the French
capacity market of a hypothetical investment in a CCGT power plant. It illustrates the
theoretical framework while providing some additional analysis when a closed-form
solution does not exist. We also discuss two straightforward extensions of our results.
First, we show that the interplay between the choice of a market design regarding the
capacity product has long-term effects by impacting the first bid in a capacity market
for a new entrant. Second, we analyze the implications of having additional costs asso-
ciated with the decision to close. We show that it can significantly modify the bids in a
capacity market, which is not possible to assess using a net present value framework.

Our paper provides foundations for future work regarding the analysis of capacity
markets. First, it would bring interesting empirical results to integrate this real options
approach in a competitionmodel. For instance, [27] has demonstrated that auction the-
ory combined with real options can shed light on market outcomes, especially in the
power sector. Second, capacity markets are closely related to the increase of new en-
tries. A significant number of studies have tackled this issue, using real options theory,
for instance, to assess the option value to enter the wholesale market [16]. However, to
our knowledge, none have combined analysis of the entry decision with the participa-
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tion in a capacity market with an endogenous bidding behavior under a real options
framework. Finally, we have assumed a simplified representative investment with a
single source of uncertainty: the inframarginal rent. On the other hand, it exists in
current electricity markets various investments with different operational characteris-
tics. For instance, renewables have high uncertainties regarding their output, while
peak technologies face uncertainty in their merit order and production cost. New tech-
nologies, such as demand responses and batteries that are pushed to be integrated into
capacitymarkets, also exhibit different uncertainty and operations. A refinement of the
model by considering all of these characteristics would make it possible to underline
future capacity markets implementations better.
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APPENDICES

A. PROOF OF PROPOSITION 2

We follow the demonstration from [27] and adapt it to the capacity market framework.
The demonstration relies on the existence of a self-financing strategy Yt between a bond
process Dβt = rβtdt and the inframarginal rent process πt, and on the assumption of
an arbitrage-free market. Equating the coefficients of the self-financing strategy results
in the following equation:

−rbopt(πt, t) + boptt (πt, t) + rπtb
opt
x (πt, t) +

1

2
σ2π2

t b
opt
xx (πt, t) = 0 (A.1)

It implies that we need to solve the following PDE:

−rbopt(w, t) + boptt (x, t) + rxboptx (x, t) +
1

2
σ2x2boptxx (x, t) = 0 (A.2)

on the region (x, t) ∈ (0, inf)×[0, T )with boundary conditionW (x, t) = max(com−πt, 0).

To solve this PDE, we introduce an equivalent risk neutral measureQwith dQ = ZT̄dP.
HerePdenotes the naturalmeasure and dZt = (µ−r)σ−1Ztdβ. Girsanov theoremyields
dβt = −(µ− r)σ−1dt + dβQ

t and therefore dπt = rπtdt + σπtdβ
Q
t . We can solve the PDE

by applying the Feynman-Kac formula. For tractability, we assume that t = 0 and
therefore T̄ = nd. A solution is given by:

bopt(πt, 0) = E∗(−
∫ nd

0

ersdsmax(com − πt, 0))

= ern
d

(com
∫ com

−∞
dF (πt)−

∫ com

−∞
πtdF (πt))

(A.3)

The rest of the demonstration relies on computing the integrals. For that purpose, we
note that Y ∼ N (ω, ζ) and X = eY , then the distribution of X is:

Fx(x) = ϕ(
ln(x)− ω

ζ
) (A.4)

Where ϕ(.) is the cumulative density function of the standard normal distribution. Fur-
thermore, the curtailed expected value of X is given by:
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E[X|X < x] = eω+
ζ2

2 ϕ(
ln(x)− ω − ζ2

σ
) (A.5)

and

ln(πnd) ∼ N (ln(π0) + (r − σ2

2
)nd, σ2nd) (A.6)

under the risk-neutral measure Q

Using the identity ϕ(−x) = 1− ϕ(x), we have for the first integral:

∫ com

−∞
dF (πnd) = Fπ

nd
(com) = ϕ(−

ln(π0)− ln(com) + (r − σ2

2
)nd

σ
√
nd

) = ϕ(z + σ
√
nd) (A.7)

And we define z := − ln(π0)−ln(com)+(r+σ2

2
)nd

σ
√
nd

. Which gives:

∫ com

−∞
dF (πnd) = ϕ(z + σ

√
nd) (A.8)

For the second integral:

∫ com

−∞
dF (πnd) = E(πnd |πnd < com) = π0e

rnd

ϕ(−
ln(π0)− ln(com) + (r + σ2

2
)nd

σ
√
nd

) (A.9)

Which gives:

∫ com

−∞
dF (πnd) = π0e

rnd

ϕ(z) (A.10)

With the expression of the integrals, we can express the option value associated with
the possibility to close to avoid the fixed costs as:

bopt(π0) = −π0ϕ(z) + e−rnd

(comϕ(z + σ
√
nd)) (A.11)

B. PROOF OF PROPOSITION 3

We use the initial paper by [25] which approximates the distribution of the basket op-
tion by a log-normal distribution, and we apply it to the special framework of the ca-
pacity market.
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Let π(t) the inframarginal rent receives at time. We suppose that the sum of the infra-
marginal rent is determined on the interval [T̄ , T̄ +nt]which represents the transaction
phase. We define the continuous sum as follow and we assume that T̄ = 0:

Π0 =

∫ nt

0

π(t)dt (B.1)

We look at characterizing the value of themodified basket put option. Using our capacity
market framework, with notably the strike price equal to the sum of actualized periodic
fixed cost Com, it can be defined as:

P [π(t),Π0] = e−rndE∗
0(max(Com − Π0)) (B.2)

With E∗
0 the expectation operator defined in the model section, which implies that un-

der the risk-adjusted density function the inframarginal rent process can be described
by dπ(t) = rπ(t)dt + σπtdZ

∗(t). For any value t > 0 we know that the value ln(π(t)) is
normally distributed, with mean ln(π0) + (r − σ2

2
)t and standard deviation σ

√
t.

The demonstration continues by assuming that the sum of log-normally distributed
valuesΠ0 is indeed following a log-normal distribution, namely that ln(Π0) is normally
distributed with a unknown mean m and variance v2. Therefore, we use the moment
generating function to determine those parameters. We define this function as Φx(k)
with:

Φx(k) = E∗
0(Π

k
0) = ekm+ v2

2
k2 (B.3)

This expression allows us to consider a system of two equations with two unknowns,
with the equations being the first two moments and the unknowns being m and v2.
Solving the system allows having the following expressions:

m = 2ln(E∗
0[Π0])−

1

2
ln(E∗

0[Π
2
0]) (B.4)

v2 = ln(E∗
0[Π

2
0])− 2ln(E∗

0[Π0]) (B.5)

With E∗
0[Π0] and E∗

0[Π
2
0] being the first and second moment of Π0. Following our as-

sumption regarding the process of the inframarginal rent, we can find a closed-form
expression for the two moments . For the first moment, namely the mean of the sum,
we can initially define it as follow:

E∗
0[Π0] =

∫ nt

0

π(t)dt (B.6)
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Which gives:

E∗
0[Π0] = π0

∫ nt

0

ertdt (B.7)

For the second moment we use the the initial expression for two variables following
a Geometric Brownian motion process , say π(t1) and π(t2). In this case, we have
E∗

0[π(t1)π(t2)] = π2
0e

r(t1+t2)+σ2t1 . Then we can expand the expression to a continuous
framework and to the sum of the inframarginal rent, which gives:

E∗
0[Π

2
0] = π2

0

∫ nt

0

∫ nt

0

er(t+s+nd)+(s+nd)σ2

dtds (B.8)

When assuming that Π0 does follow a log-normal distribution, and with a closed-form
expression for m and v2, we can evaluate the put option P [πt,Π0] using the standard
finance theory as shown in the proof of proposition 2:

bopt(π0,Π0) = P [π0,Π0] = −π0n
tϕ(z) + Comϕ(z + v) (B.9)

Where:

z = −
m− ln(com

∫ nt

0
e−rt) + v2

v

Note that we do not include any discounting factor for the inframarginal as it is already
done using ntπ0. Compared to the initial basket option, which compares asset price at
the same period in time, in our framework, the option is exercised only with respect to
the sum of the expected discounted inframarginal rent received during the transaction
phase.

C. PROOF OF PROPOSITION 4

For the net present value, the derivative of the bid with respect to nt is:

∂bnpv

∂nt
= −nt + come−r(nt+nd) (C.1)

Therefore the threshold for the sign of nt on the netpresent value bid is given by the
first order condition such that:

−nt + come−r(nt+nd) = 0 (C.2)
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Which implies:

com = π0e
r(nd+nt) (C.3)

For the real option bid, the derivative of the bid with respect to nt is:

∂bopt

∂nt
= −π0(ϕ(z) + nt ∂z

∂nt
φ(z)) + come−rnd

(e−rnt

ϕ(z + v) +

∫ nt

0

e−rtdtφ(z + v)) (C.4)

When rearranged:

∂bopt

∂nt
= −π0(ϕ(z) + nt ∂z

∂nt
φ(z)) + Com(S1ϕ(z + v) + φ(z + v)

∂z + v

∂nt
) (C.5)

with Com = e−rnd
com

∫ nt

0
e−rtdt and S1 = e−rnt

/
∫ nt

0
e−rtdt.

The Cdf ratio and the Df ratio conditions are given by rearranging again the equation
and by respectively the first and second term in brackets:

∂bopt

∂nt
= [ComS1ϕ(z + v)− π0(ϕ(z)] +

[
∂z

∂nt
(Comφ(z + v)− ntπ0φ(z))

]
+Comφ(z + v)

∂v

∂nt

(C.6)

Excluding the sign of ∂z
∂nt the first two terms are positive if and only if: Cdf ratio: S1Com

π0
≥

R0 =
ϕ(z)

ϕ(z+v)
Df ratio: Com

ntπ0
≥ R1 =

φ(z)
φ(z+v)

The derivative ∂v
∂nt is always positive and is equal to:

r ent (r+σ) + σ ent (r+σ) − r ent r − σ ent (2 r+σ)

2
√
v2 (ent (r+σ) + ent r − ent (2 r+σ) − 1)

(C.7)

Therefore, we need a third condition given by the sign of ∂z
∂nt . It can be express as follow:

∂z

∂nt
= −

∂v2

∂nt + 2 r

2
√
v2

−

∂v2

∂nt

(
ln
(
− com (e−nt r−1)

r

)
− ln(V 2 p0)

2

)
2 v3

(C.8)

The sign of the derivative is given when equating the equation to 0, which given the
following condition on the fixed cost for the derivative to be positive:
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ccom
∫ nt

0

e−rtdt ≥
√
π0V ev

2(2r ∂v2

∂nt −1) (C.9)

The limits of the derivative at its extreme is found by analyzing the behavior of ϕ(z),
ϕ(z+ v), φ(z) and φ(z+ v). Note first that z → 0when nt → +∞, while v → +∞when
nt → +∞.

Then the density function both converge towards 0 when z → 0, z + v → +∞. For the
cumulative density function: ϕ(z + v) → 1 when z + v → +∞, while ϕ(z) → 0. This
implies the first result.

Concerning the case of of nt → 0, depending on the initial value of π0 with respect to
com, the value of ϕ(z) can either converge to 0 or to 1 when nt → 0. Indeed, recall that
the sign of the derivative of z can either be positive or negative. However, in both cases,
the value is either 0 or a positive value.

D. PROOF OF PROPOSITION 5

The results of the proposition follow directly from the derivative of the bidwith respect
to the variables.

For π0:

∂bopt

∂π0

= −nt(ϕ(z) + π0
∂z

∂π0

φ(z)) + Comφ(z + v)
∂z + v

∂π0

(D.1)

Which gives when rearranged:

∂bopt

∂π0

= −ntϕ(z) +
∂z

∂π0

(Comφ(z + v)− ntπ0φ(z)) + Comφ(z + v)
∂v

∂π0

(D.2)

We found that: (i) ∂v
∂π0

is null and that (ii) ∂z
∂π0

is always negative as it is equal to:

∂z

∂π0

= − 1

p0
√
v2

(D.3)

Under the condition that Com

ntπ0
≥ R1 =

φ(z)
φ(z+v)

(which is the Df ratio) then the derivative
is always negative.

For com:

45



∂bopt

∂com
= −ntπ0

∂z

∂com
φ(z) + e−rnd

∫ nt

0

e−rtdtϕ(z + v) +
∂z + v

∂com
Comφ(z + v) (D.4)

Which give when rearranged:

∂bopt

∂com
= e−rnd

∫ nt

0

e−rtdtϕ(z+v)+
∂z

∂com
(Comφ(z+v)−ntπ0φ(z))+

∂v

∂com
Comφ(z+v) (D.5)

We found that: (i) ∂v
∂com

is null and that (ii) ∂z
∂com

is always positive as it is equal to:

∂z

∂com
=

1

com
√
v2

(D.6)

Under the condition that Com

ntπ0
≥ R1 =

φ(z)
φ(z+v)

(which is the Df ratio) then the derivative
is always positive.

For nd:

∂bopt

∂nd
= −π0n

t ∂z

∂nd
φ(z) + Com(−rϕ(z + v) +

∂z + v

∂nd
φ(z + v)) (D.7)

Which give when rearranged:

∂bopt

∂nd
= Com(φ(v + v)

∂v

∂nd
− rϕ(z + v)) +

∂z

∂nd
(Comφ(z + v)− ntπ0φ(z)) (D.8)

The conditions on the derivative of the bid with respect to nd come straightforwardly.
Note that the condition on the risk-free rate and the fixed costs are given by the respec-
tive derivative of v and z with respect to nd:

∂v

∂nd
= − r − σ

2
√
v2

′
(D.9)

and

∂z

∂nd
=

(
ln
(
− com (e−nt r−1)

r

)
− ln(V )

2

) (
2 r − e−ndσ (r+σ) (V r+V σ)

M p0 (ent r+ntσ−1)

)
2 v3

−e
−ndσ (r + σ) (V r + V σ)

2M p0 (ent r+ntσ − 1)
√
v2

(D.10)
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E. PROOF OF LEMMA 1

Recall that:

∂bnpv

∂nt
= −nt + come−r(nt+nd) (E.1)

and that:

∂bopt

∂nt
= −π0(ϕ(z) + nt ∂z

∂nt
φ(z)) + Com(S1ϕ(z + v) + φ(z + v)

∂z + v

∂nt
) (E.2)

Therefore the derivative of the flexibility, which is equal to the derivative of the differ-
ence between the two previous equation:

∂Γ

∂nt
= −π0(ϕ(z)+nt ∂z

∂nt
φ(z))+Com(S1ϕ(z+v)+φ(z+v)

∂z + v

∂nt
)+nt−come−r(nt+nd) (E.3)

When rearranged:

∂Γ

∂nt
= −π0((ϕ(z)− 1) + nt ∂z

∂nt
φ(z)) + Com(S1(ϕ(z + v)− 1) + φ(z + v)

∂z + v

∂nt
) (E.4)

The conditions and the ratio in the proposition stem directly from equating:

∂Γ

∂nt
= 0 (E.5)

And from differentiating from the cases where the denominator of the ratio is positive
or negative. Which is given by S1(ϕ(z + v)− 1) + ∂z+v

∂nt
φ(z + v) > 0 or by S1(ϕ(z + v)−

1) + ∂z+v
∂nt

φ(z + v) < 0.

F. PROOF OF LEMMA 4

We modify the results of the proof of proposition 2 and apply it directly to the proof
of proposition 3. First, note that the new payoff of the basket option is now equal to
max(Com − Π0,−P ), with P the costs associated with the closing decision, which are
the penalty and the closing costs. In this case we need to solve the PDE of equation A.2
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on the same region but with boundary conditionW (x, t) = max(Com −Πt, P ). We can
solve the PDE by applying the Feynman-Kac formula. A solution is given by:

bopt(Πt, 0) = E∗(−
∫ nd

0

ersdsmax(Com − Π0))

= ern
d

(Com

∫ Com+P

−∞
dF (Πt)−

∫ Com+P

−∞
ΠtdF (Πt)− P

∫ +∞

Com+P

dF (Πt))

(F.1)

First note that for the two integrals, their expression are close to the one in the proof of
proposition 2 and 3, namely we simply add the closing cost to the periodic fixed cost
in the value z:

ern
d

(Com

∫ Com+P

−∞
dF (Πt)−

∫ Com+P

−∞
ΠtdF (Πt)) = −π0n

tϕ(z) + e−rnd

Comϕ(z + v) (F.2)

with z := −m−ln(com
∫ nt

0 e−rtdt+P )+v2

v
.

For the third integral, recall that:

∫ +∞

Com+P

dF (Πt) = 1−
∫ Com+P

−∞
dF (Πt) = 1− ϕ(z + v) (F.3)

Therefore:

bopt(Πt, 0) = −π0n
tϕ(z) + e−rnd

(Com)ϕ(z + v)− P (1− ϕ(z + v)) (F.4)

When rearranged:

bopt(Πt, 0) = −π0n
tϕ(z) + e−rnd

((Com + P )ϕ(z + v)− P ) (F.5)
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